TinyImageNet
SplitTinyImagenet
Bases: Benchmark
Source code in sequel/benchmarks/tinyimagenet.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
|
__init__(num_tasks=10, task_input_transforms=_default_input_transform, task_target_transforms=None)
Inits the SplitTinyImagenet class. The number of classes_per_task
is equal to the ratio of 200 and
num_tasks
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
num_tasks |
int
|
The number of tasks. Defaults to 10. |
10
|
task_input_transforms |
Optional[list]
|
If set, the benchmark will use the provided torchvision input transform. Defaults to _default_input_transform. |
_default_input_transform
|
task_target_transforms |
Optional[list]
|
If set, the benchmark will use the provided torchvision target transform. Defaults to None. |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
The number of tasks must be divisible by the number of classes (200). |
Source code in sequel/benchmarks/tinyimagenet.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
|
__load_tinyimagenet()
Loads the tinyimagenet dataset.
The original dataset does not have labels for the test dataset. For this reason, the validation dataset is used.
Source code in sequel/benchmarks/tinyimagenet.py
70 71 72 73 74 75 76 77 78 |
|