Bases: PytorchBaseAlgorithm
Less-Forgetting Learning implementation in PyTorch.
The equivalent JAX implementation is LFL in JAX
.
References
[1] Jung, H., Ju, J., Jung, M. & Kim, J. Less-forgetful learning for domain expansion in deep neural
networks. Proceedings of the AAAI Conference on Artificial Intelligence 32, (2018).
Source code in sequel/algos/pytorch/lfl.py
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45 | class LFL(PytorchBaseAlgorithm):
"""Less-Forgetting Learning implementation in PyTorch.
The equivalent JAX implementation is [`LFL in JAX`][sequel.algos.jax.lfl.LFL].
References:
[1] Jung, H., Ju, J., Jung, M. & Kim, J. Less-forgetful learning for domain expansion in deep neural
networks. Proceedings of the AAAI Conference on Artificial Intelligence 32, (2018).
"""
def __init__(self, lfl_lambda: float, *args, **kwargs):
"""Inits the LFL class.
Args:
lfl_lambda (float): the regularization coefficient.
"""
super().__init__(*args, **kwargs)
self.regularization_coefficient = lfl_lambda
def __repr__(self) -> str:
return f"LFL(regularization_coefficient={self.regularization_coefficient})"
def on_after_training_task(self, *args, **kwargs):
# freeze previous model
# assert isinstance
self.prev_backbone = copy.deepcopy(self.backbone)
self.prev_backbone.eval()
for p in self.prev_backbone.parameters():
p.requires_grad = False
def on_before_backward(self, *args, **kwargs):
if self.task_counter > 1:
self.prev_backbone.eval()
self.backbone.eval()
features = self.backbone.encoder(self.x)
prev_features = self.prev_backbone.encoder(self.x)
self.loss += self.regularization_coefficient * F.mse_loss(features, prev_features)
|
__init__(lfl_lambda, *args, **kwargs)
Inits the LFL class.
Parameters:
Name |
Type |
Description |
Default |
lfl_lambda |
float
|
the regularization coefficient. |
required
|
Source code in sequel/algos/pytorch/lfl.py
| def __init__(self, lfl_lambda: float, *args, **kwargs):
"""Inits the LFL class.
Args:
lfl_lambda (float): the regularization coefficient.
"""
super().__init__(*args, **kwargs)
self.regularization_coefficient = lfl_lambda
|