KCL
Amortized
Bases: nn.Module
Source code in sequel/algos/pytorch/kcl.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
|
__init__(input_units, d_theta, output_units)
Inits the inference block used by the Kernel Continual Learning algorithm.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_units |
int
|
dimensionality of the input. |
required |
d_theta |
int
|
dimensionality of the intermediate hidden layers. |
required |
output_units |
int
|
dimensionality of the output. |
required |
Source code in sequel/algos/pytorch/kcl.py
38 39 40 41 42 43 44 45 46 47 48 49 |
|
InferenceBlock
Bases: nn.Module
Source code in sequel/algos/pytorch/kcl.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
|
__init__(input_units, d_theta, output_units)
Inits the inference block used by the Kernel Continual Learning algorithm.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_units |
int
|
dimensionality of the input. |
required |
d_theta |
int
|
dimensionality of the intermediate hidden layers. |
required |
output_units |
int
|
dimensionality of the output. |
required |
Source code in sequel/algos/pytorch/kcl.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
|
KCL
Bases: PytorchBaseAlgorithm
Kernel Continual Learning algorithm. The code is adapted from https://github.com/mmderakhshani/KCL/blob/main/stable_sgd/main.py
KCL is not yet implemented in JAX.
References
[1] Derakhshani, M. M., Zhen, X., Shao, L. & Snoek, C. Kernel Continual Learning. in Proceedings of the 38th International Conference on Machine Learning, ICML 2021.
Source code in sequel/algos/pytorch/kcl.py
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
|
forward()
Performs the forward for the Kernel Continual Learning backbone.
Source code in sequel/algos/pytorch/kcl.py
237 238 239 240 |
|
kl_div(m, log_v, m0, log_v0)
Computes the Kullback-Leibler divergence assuming two normal distributions parameterized by the arguments.
Source code in sequel/algos/pytorch/kcl.py
242 243 244 245 246 247 248 249 250 251 252 253 |
|
prepare_train_loader(task)
Splits the training dataset of the given task
to training and coreset.
Source code in sequel/algos/pytorch/kcl.py
222 223 224 225 226 227 228 |
|
KernelBackboneWrapper
Bases: BaseBackbone
Source code in sequel/algos/pytorch/kcl.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
|
__init__(model, hiddens, lmd, num_tasks, d_rn_f, kernel_type='rff')
Model Wrapper for Kernel Continual Learning. Extracts the encoder of the original backbone and performs the k ernel computations outlined in [1].
Notes
The hiddens
argument can be removed and instead inferred.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
BaseBackbone
|
the original backbone. The model must have an encoder component. |
required |
hiddens |
int
|
the dimensionality of the hidden dimensions for the kernel-specific modules. |
required |
lmd |
float
|
The initial value for the lmd Parameter. |
required |
num_tasks |
int
|
the number of tasks to be solved. |
required |
d_rn_f |
int
|
dimensionality of the Random Fourier Features (RFFs). Applicable only if |
required |
kernel_type |
str
|
description. Defaults to "rbf". |
'rff'
|
Source code in sequel/algos/pytorch/kcl.py
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
|