JaxBaseAlgo
JaxBaseAlgorithm
Bases: BaseAlgorithm
Base class for algorithms implemented in JAX.
Source code in sequel/algos/jax/jax_base_algo.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
|
__init__(backbone, benchmark, optimizer, callbacks=[], loggers=None, lr_decay=None, grad_clip=None, reinit_optimizer=True, seed=0)
Inits JaxBaseAlgorithm class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
backbone |
JaxBaseBackbone
|
The backbone model, e.g., a CNN. |
required |
benchmark |
Benchmark
|
The benchmark, e.g., SplitMNIST. |
required |
optimizer |
optax.GradientTransformation
|
The optimizer used to update the backbone weights. |
required |
callbacks |
Iterable[BaseCallback]
|
A list of callbacks. At least one instance of MetricCallback should be given. Defaults to []. |
[]
|
loggers |
Optional[Logger]
|
A list of logger, e.g. for Weights&Biases logging functionality. Defaults to None. |
None
|
lr_decay |
Optional[float]
|
A learning rate decay used for every new task. Defaults to None. |
None
|
grad_clip |
Optional[float]
|
The gradient clipping norm. Defaults to None. |
None
|
reinit_optimizer |
bool
|
Indicates whether the optimizer state is reinitialized before fitting a new task. Defaults to True. |
True
|
seed |
int
|
The seed used by JAX. Sets the corresponding |
0
|
Note
- the
_configure_optimizers
method will be moved to a dedicated Callback.
Source code in sequel/algos/jax/jax_base_algo.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
|
base_training_step(state, x, y, t, step)
Train for a single step.
Source code in sequel/algos/jax/jax_base_algo.py
162 163 164 165 166 167 168 |
|
create_train_state(model, rng, task=None)
Creates initial TrainState
.
Source code in sequel/algos/jax/jax_base_algo.py
86 87 88 89 90 91 92 93 94 95 96 |
|
JaxRegularizationBaseAlgorithm
Bases: JaxBaseAlgorithm
JaxRegularizationBaseAlgorithm inherits from JaxBaseAlgorithm
and implements a few utility functions that are
used by all regularization-based algorithms such as calculating the regularization loss and computing the
per-parameter importance.
Source code in sequel/algos/jax/jax_base_algo.py
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
|
__init__(regularization_coefficient, *args, **kwargs)
Base class for regularization-based algorithms implemented in JAX, such as EWC and SI
Parameters:
Name | Type | Description | Default |
---|---|---|---|
regularization_coefficient |
float
|
the coefficient used to weigh the regularization loss. |
required |
Source code in sequel/algos/jax/jax_base_algo.py
198 199 200 201 202 203 204 205 206 207 |
|