
Flexible Channel Dimensions for Differentiable
Architecture Search

Ahmet Caner Yüzügüler, Nikolaos Dimitriadis, and Pascal Frossard

EPFL
{ahmet.yuzuguler,nikolaos.dimitriadis,pascal.frossard}@epfl.ch

Abstract. Finding optimal channel dimensions (i.e., the number of fil-
ters in DNN layers) is essential to design DNNs that perform well under
computational resource constraints. Recent work in neural architecture
search aims at automating the optimization of the DNNmodel implemen-
tation. However, existing neural architecture search methods for channel
dimensions rely on fixed search spaces, which prevents achieving an effi-
cient and fully automated solution. In this work, we propose a novel dif-
ferentiable neural architecture search method with an efficient dynamic
channel allocation algorithm to enable a flexible search space for channel
dimensions. We show that the proposed framework is able to find DNN
architectures that are equivalent to previous methods in task accuracy
and inference latency for the CIFAR-10 dataset with an improvement of
1.3−1.7× in GPU-hours and 1.5−1.7× in the memory requirements dur-
ing the architecture search stage. Moreover, the proposed frameworks do
not require a well-engineered search space a priori, which is an important
step towards fully automated design of DNN architectures.

Keywords: Deep neural networks, neural architecture search, differen-
tiable channel masking

1 Introduction

Deep neural networks (DNN) have become ubiquitous in numerous application
domains such as computer vision and natural language processing. However, the
performance and computational requirements of DNN models are highly depen-
dent on their channel dimensions, namely a set of hyperparameters that define
the number of filters in DNN layers. Finding the right set of channel dimensions
for a DNN model plays a crucial role in achieving high performance under tight
computational resource constraints, but it poses a challenging task for devel-
opers and engineers. Therefore, researchers have developed neural architecture
search frameworks that automatically look for optimal channel dimensions of a
DNN model[12, 14].

The early versions of neural architecture search frameworks have resorted
to reinforcement learning [10, 12, 17, 18], evolutionary algorithms [9, 11], and
Bayesian optimization [2] to search for optimal DNN architectures. Unfortu-
nately, these methods have time and space complexities that increase combina-
torially with the number of options that are defined in the search space, requiring

ar
X

iv
:2

30
6.

08
02

1v
1

 [
cs

.L
G

]
 1

3
Ju

n
20

23

2 A. C. Yüzügüler et. al

excessive amounts of computational resources. To reduce the computational com-
plexity of channel dimension search, Wan et al. [14] proposed the differentiable
channel masking method, which mimics various channel dimensions by simply
passing the feature maps through a set of binary masks. While the differentiable
channel masking method significantly reduces the computational complexity of
channel dimension search, it requires a search space that is carefully designed
and tuned prior to the search phase, which hinders its practicality and usability
in realistic scenarios.

In this work, we propose FlexCHarts, which utilizes a flexible search space
that does not need to be defined a priori. We reformulate the problem of differ-
entiable channel dimension search such that FlexCHarts does not only search for
the optimal channel dimensions but also modifies the boundaries of the search
space on-the-fly to add further flexibility and reach optimal channel dimensions.
The proposed method relaxes the requirement of an a priori well-designed search
space for channel dimension optimization and enables finding the optimal chan-
nel dimensions only with loosely-defined initial conditions of a search space,
improving the practicality and usability of neural architecture search.

The rest of this paper is organized as follows: We first discuss the related
work on neural architecture search, then we give a background information on
the differentiable channel masking method, which forms the basis of our work. We
then elaborate on the proposed FlexCHarts method as well as our novel dynamic
channel allocation mechanism. Finally, we give the details of our experiments and
discuss the results.

2 Related Work

Building DNN architectures that achieve high performance at low minimal hard-
ware performance is a challenging task for developers and engineers. Thus, re-
searchers have put considerable effort into developing effective neural architec-
ture search methods to help automate the design of DNNs. Early work on neu-
ral architecture search adopted frameworks like reinforcement learning [10, 12,
17, 18], evolutionary algorithms [9, 11], and Bayesian optimization [2]. Because
these methods operate on a discrete search space and need to perform many
trials while searching for an optimal architecture in an exponentially-increasing
hyperparameter space, they require thousands of GPU-hours to find optimal
DNN architectures, which greatly limits their applicability.

To mitigate the prohibitive cost of architecture search, techniques such as
weight-sharing [10] and one-shot search [1] have been proposed. While these
techniques reduce the cost of each trial by allowing to reuse trained parameters,
they still require many trials to find the optimal DNN architectures. To further
improve the efficiency of neural architecture search, Liu et al. [8] proposed a
differentiable neural architecture search, which employs a gradient descent op-
timizer to efficiently search for optimal DNN architectures. Furthermore, Wu
et al. [15] proposed a hardware-aware differentiable neural architecture search,
which enables to co-optimize both task accuracy and hardware metrics (e.g.,

Flexible Channel Dimensions for Differentiable Architecture Search 3

latency). While these improvements drastically improved the computational ef-
ficiency of neural architecture search and the performance of the resulting DNN
architectures, they did not address the challenges of searching for optimal chan-
nel dimensions, which is critical to the performance of DNNs.

To that end, Wan et al. [14] proposed differentiable channel masking method,
which significantly improves the computational efficiency of neural architecture
search with a search space that includes large numbers of options for channel
dimensions. Unfortunately, the effectiveness of the proposed method is highly
sensitive to the design of search space due to its requirements of a fixed search
space. Fig. 1 shows the search space of an existing differentiable neural architec-
ture search framework for channel dimensions [14]. We observe that the channel
ranges in this search space are narrowed down to a few options out of a wide
range using heuristics, while allowing only a limited degree of freedom for the
optimizer. Unfortunately, determining a priori the channel range of each layer
is nontrivial as it requires expert knowledge on DNN architectures. Also, the
resulting search space is specific to the problem that it is designed for and it
may not be transferable to the settings with different objectives and constraints.
Moreover, when we investigate the channel dimensions found within this search
space, as shown by red circles in Fig. 1, we observe that many channel dimensions
are located at the boundary of the search space, which indicates that the optimal
channel dimensions may lie outside of the engineered search space, resulting in
a DNN architecture that does not correspond to the optimal solution.

Few prior works have addressed the issues inherent to the fixed search spaces.
Liu et al. [7] proposed the progressive neural architecture search, which gradu-
ally increases the complexity of the search space during optimization. Similarly,
Ci et al. [3] proposed the neural search space evolution technique, which enables
adding new operations to the search space as the architecture search progresses.
Unfortunately, these methods are not applicable to the neural architecture search
with channel dimension search. As a result, efficient search of channel dimensions
without the restrictions of a fixed search space remains an open research ques-
tion. Our work addresses these challenges and introduces a flexible search space
for channel dimensions by proposing a novel differentiable neural architecture
search to optimize for channel dimensions efficiently.

3 Differentiable Channel Masking

The input and output channel dimensions of a convolutional kernel have a signif-
icant impact on its performance and computational complexity. Increasing the
number of channels typically leads to improved performance due to higher num-
ber of parameters at the expense of computational complexity, and vice versa.
Thus, the channel dimensions must be carefully tuned while designing DNNs
to obtain the required performance while attaining low computational complex-
ity. With the number of kernels in modern DNNs exceeding hundreds, the task
of finding the optimal channel dimensions for each kernel in a DNN is over-

4 A. C. Yüzügüler et. al

Fig. 1: Prior work’s search space for channel dimensions [14]. Rows correspond to
the channel range (between 0 and 200) of the layers in FBNetv2-F4 [14]. Ticks
denote the options for channel dimensions and red circles represent the channel
dimensions found.

whelmingly time-consuming and costly. Therefore, researchers have developed
automatic search methods for channel dimensions.

In standard search methods, each candidate channel dimension requires an
additional convolutional kernel, which increases the computational cost and
memory requirements of the search linearly with the number of channel options.
The channel masking method, on the other hand, simulates various candidate
channel dimensions on a single overparameterized kernel, incurring only mini-
mal computational overhead. Because of its computational efficiency, we use the
channel masking method as a basis for the proposed framework. In this section,
we explain how the channel masking method works in more detail.

Let us consider a convolutional kernel with a number of output channels f ,
which is to be chosen from a set of possible channel dimensions S, denoted as
below:

S = {fk | fk ∈ Z, k ∈ Z, 1 ≤ k ≤ K} (1)

where fk represents the possible channel dimensions and K is the size of the set
of possible channel dimensions. To evaluate the likelihood of fk being the optimal
channel dimension for the given task, the channel masking method defines a set
of trainable parameters {αk | αk ∈ R, 1 ≤ k ≤ K}, where higher values of αk

indicate that fk is more likely to be the optimal channel dimension.
Evaluating the impact of each fk on a DNN’s overall performance and com-

putational cost requires instantiating and training a separate kernel for each

Flexible Channel Dimensions for Differentiable Architecture Search 5

𝐶
𝐶

… =

𝐹
𝑊!

𝑊"

𝑋 𝑌 ×

×𝛼#

×𝛼!

×𝛼$

+…

+

…

𝑓!

𝑓"

𝐹
𝐶

∗ = 𝑌)𝑚$

𝑚!

𝑚#

Convolution Channel Masking

Fig. 2: Illustration of a convolutional operation followed by channel masking to
simulate various output channel dimensions.

option, which increases the memory footprint and computational complexity of
the search stage linearly with the number of options. To efficiently search for
optimal channel dimensions with large numbers of options, the channel mask-
ing method instantiates and trains a single kernel and simulates various channel
dimensions masking out a fraction of the channels in this kernel.

Fig. 2 illustrates how the channel masking method simulates various channel
dimensions using a single kernel. Let X, W and Y be the input activation,
weight, and output activation of a convolutional kernel. X and Y have channel
dimensions of C and F ,respectively. The channel masking method exploits the
fact that any convolutional kernel with an output channel dimension fk that
is smaller than F can be obtained simply by selecting fk channels from Y and
masking out the rest. For this purpose, the channel masking method instantiates
a set of masks {mk | k ∈ Z, 1 ≤ k ≤ K}, where mk = (1)fki=1 ∪ (0)Fi=fk+1. In
other words, the first fk elements of mk are set to one whereas the remaining
elements are zero; thus, the mk allows selecting the first fk channels of Y and
zeroes out the channels that are greater than fk.

During the search phase, the DMaskingNAS method multiplies the output
activation Y by the masks mk and calculate Ŷ, which is the weighted sum of the
output of simulated layers with various channel dimension using the following
formula:

Ŷ =

K∑
k=1

gτ (αk)mkY (2)

where gτ is a Gumbel softmax function with the temperature constant τ that
maps the α values between 0 and 1 [14]. The expression in Eq. 2 can be simplified
by taking Y out of the summation, reducing the overhead of masking to only a
weighted sum of low-dimensional masks. Therefore, the channel masking method
simulates multiple channel dimensions with negligible computational overhead.

During the search phase, the channel masking method updates the α values
with a gradient descent optimizer by minimizing the following loss function:

6 A. C. Yüzügüler et. al

min
α

min
W

Lacc(Nα,W (x), y) + λLlatency(Nα,W) (3)

where Nα,W represents the network, and x and y represent training samples
and ground-truth, and Lacc and Llatency represent the loss functions for classifi-
cation accuracy and latency, respectively. The coefficient λ controls the trade-off
between accuracy and latency. As suggested by the prior work [8], the loss func-
tion is minimized by calculating the gradients using a first-order approximation
in order to reduce the computational cost of the search. At the end of the search
phase, the final channel dimensions are selected as the channel dimensions that
correspond to the maximum αi, where i = argmax

k
αk.

The channel masking method permits to search for channel dimensions among
various options with minimal computational overhead. However, the standard
channel masking methods proposed in prior work can search only within a fixed
range of channel dimensions [14], which hinders its effectiveness and practical-
ity. Thus, in the next section, we introduce FlexCHarts, which is a differentiable
channel masking method that searches for channel dimensions in a flexible range.

4 FlexCHarts

To enable searching for channel dimensions in a flexible range, we first introduce
the flexible channel masking method, which redefines the α variables so as to
permit to change the range of channel dimensions as the search progresses. Then,
we elaborate on our dynamic channel allocation mechanism, which modifies the
kernels to accommodate for the changes in the channel dimension range during
the search.

4.1 Flexible channel masking

FlexCHarts redefines the α variables in such a way that the channel dimension
range can be changed on-the-fly during the search while still benefiting from
the computational efficiency of the vanilla channel masking method. Instead
of defining each αk as an independent variables [14], we define αk as a smooth
function of the channel dimension that it corresponds to, where it has the highest
value at the center and close to zero at the edges of the range. While various
smooth functions would be equally applicable, without loss of generality, we opt
for the normal distribution to define αk in this work due to its simplicity:

αk = exp(−1

2
(
fk − µ

σ
)2) (4)

where µ and σ are the mean and standard deviation of the exponential func-
tion, respectively. The formulation given above differs from the vanilla channel
masking method in the sense that α is no longer a trainable variable. Instead,
the proposed flexible channel masking method defines µ as the trainable vari-
able and derives the α values from the exponential function given in Eq. 4. This

Flexible Channel Dimensions for Differentiable Architecture Search 7

36 72 108 144 180
Channel dimensions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 v
al

ue
s

Epoch: 1

36 72 108 144 180
Channel dimensions

Epoch: 50

(a) Vanilla channel masking.

0 50 100 150 200
Channel dimensions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 v
al

ue
s

Epoch: 1

0 50 100 150 200
Channel dimensions

Epoch: 50

(b) FlexCHarts.

Fig. 3: An example of α values in vanilla channel masking method versus the
proposed FlexCHarts methods between the first and last epoch of a search.

formulation smoothly adapts the α values to different channel ranges based on
the information on the gradients of µ.

Fig. 3 shows an example of how α values change in vanilla channel mask-
ing and in FlexCHarts, between the first and last epochs of a dimension search
process. In vanilla channel masking method, as shown in Fig. 3a, α values are
initialized randomly. During the search, the α values are updated independently
and eventually in the last epoch, the α value that corresponds to the optimal
channel dimension becomes significantly higher than the others, setting the chan-
nel dimension for the final architecture. In contrast, the α values in FlexCHarts,
as shown in Fig. 3b, are taken from the exponential function given in Eq. 4
(shown with red dashed line in the figure). The mean value of the exponential
function is updated at every step of the search phase, gradually shifting the α
values towards the optimal channel dimension.

8 A. C. Yüzügüler et. al

The proposed reformulation of α variables in Eq. 4 has two main advantages.
First, the given expression is already differentiable; thus, it eliminates the need
for tuning additional optimization hyperparameters such as temperature and
noise in Gumbel softmax to make the optimization amenable to solution with
gradient descent as in the prior work [14]. Second, thanks to αk values that are
close to zero at the edges of the range, shifting the range to larger or smaller
values gently introduces the new parameters to the kernels, preventing abrupt
changes in the loss value that would otherwise be detrimental to the search pro-
cess. In short, the proposed formulation of α variables is more efficient, flexible
and easier to tune than the vanilla channel masking method. Thus, it provides
a better solution when searching for optimal channel dimensions in DNN archi-
tectures.

4.2 Dynamic channel allocation

In vanilla channel masking methods, the kernels do not require any dimension
changes during the search phase as the channel range remains constant. How-
ever, with the reformulation of the α variables in FlexCHarts that permits to
change the channel dimension range as the search progresses, the dimensions of
the kernels must also be efficiently adapted during the search phase. We now
elaborate on how we modify the kernels for dynamic channel dimension range.

Kernels in channel masking methods must have a number of channels equal to
or greater than the maximum of the channel dimension range. Therefore, when
the range of the channel dimensions shifts to higher values, we need to instantiate
a larger kernel. Likewise, when the range of channel dimensions shifts to smaller
values, a part of the kernel becomes redundant due to multiplication with an αk

value that is close to zero and is therefore no longer needed. As such, we can
reduce the memory footprint and improve the computational efficiency of the
search by switching to a smaller kernel. To adjust the dimensions of the kernels
based on the changes in the channel dimension range, we introduce the dynamic
channel allocation algorithm.

There are two critical design considerations for the dynamic channel alloca-
tion algorithm. First, changing the kernel dimensions should have minimal im-
pact on the on-going search to prevent loss of progress. Second, allocating new
channels should incur only an insignificant computational overhead. To achieve
the first condition, when the proposed dynamic channel allocation algorithm
changes the dimensions of a kernel, it transfers the trained weights of the old
kernel to the new one where applicable, which preserves the progress made in
earlier training steps. For the latter objective, the proposed algorithm shall not
react to changes in αk values in every step. Instead, it waits until the end of an
epoch to perform the changes to the kernels to reduce the computational over-
head. Altogether, the proposed dynamic channel allocation algorithm enables
changing the kernel dimensions with minimal impact on the search process and
negligible computational overhead.

In more details, the dynamic channel allocation proceeds as described in Al-
gorithm 1. The algorithm takes a Supernet Nα,W as input, which consists of

Flexible Channel Dimensions for Differentiable Architecture Search 9

Supernet Nα,W with parameters W and α;
Optimizer weight optimizer Gw, arch optimizer Ga;
Dataset training: Dt, search: Ds;
Initialize;
for all epoch e do

for all steps s do
Read training batch bt ← Dt;
Backpropagate Nα,W with bt;
Update W ← Gw;
Read search batch bs ← Ds;
Backpropagate Nα,W with bs;
Update α← Ga;

end
Update channel dimensions of Nα,W ;

end
Algorithm 1: FlexCHarts algorithm for channel dimension search with dy-
namic channel allocation.

kernels with weights W and parameters α, as well as the gradient descent opti-
mizers Gw and Ga to update the weights and channel parameters, respectively. It
also takes three datasets as inputs: equally sized Dt and Ds to train the weights
and channel parameters, respectively. In each step of the algorithm, it reads a
batch of samples from Dt, performs a backpropagation on the supernet, and
updates the weights. Then, it repeats the same steps for channel parameters by
reading a batch from Ds, performing a backpropagation, and updating them.
When the same operations are performed for all samples in datasets Dt and Ds,
it updates the channel dimensions of the supernet based on the changes made
to α values. We repeat the same operations for a predefined number of epochs.

In short, the proposed FlexCHarts algorithm permits to search for optimal
channel dimensions in a flexible channel dimension range while automatically
managing the changes in the supernet with minimal computational overhead.

5 Experiments

We now show the effectiveness of the proposed method through a number of ex-
periments. In this section, we first give details about the search space, datasets,
and hyperparameters that we use in the experiments, then we compare the pro-
posed FlexCHarts method against the baseline methods through extensive ex-
periments and discuss the results.

5.1 Experimental setup

We perform experiments on a widely used image classification dataset, namely
CIFAR10 [6] with a preprocessing pipeline for training that consists of a random
crop of the input image with a size of 32 and padding of 4, random horizontal

10 A. C. Yüzügüler et. al

flip, normalization, and a cut-out with a length of 16 [4]. For the validation and
test phases, we use only a normalization layer in the preprocessing pipeline. We
use a batch size of 96 for both the search and training phases. We perform all
the experiments on an NVIDIA Tesla V100-SXM2 GPU with a 32GB memory.

For the search phase, we randomly split the training data set into two equally
sized subsets to train the weights and channel parameters separately. We use a
stochastic gradient descent (SGD) optimizer with a momentum coefficient of 0.9,
a weight decay of 3e− 4, a gradient clip of 5 to train the weights. We initialize
the learning rate of the SGD optimizer to 0.025 and anneal it every step with
a cosine annealing scheduler down to 0 at the end of the last step. We use an
Adam optimizer [5] with a learning rate of 0.1, running average coefficients of
0.5 and 0.999, and a weight decay of 0 to train the channel parameters. We use
a dropout with a probability that starts at 0 and linearly increases to 0.2 until
the end of the last step. The search phase takes 50 epochs to complete. After the
search phase is completed, we train the DNN architecture with the discovered
channel dimensions from scratch for 100 epochs to obtain its final accuracy. We
also use an SGD optimizer in the training phase with the same hyperparameters
as for the search phase.

As widely adopted by the community [8, 15, 14], we use a fixed stem and
head stages at the beginning and end of our DNN architectures while we are
searching for the optimal channel dimensions for the intermediate stages. The
stem and head stages consist of convolutional blocks with kernel sizes of 3 × 3
and 1×1 and channel dimensions of 108 and 256, respectively. The intermediate
block consists of 20 stages, each with a microarchitecture identical to the DARTS
architecture [8]. Each stage may have different channel dimensions as a result of
the search phase while all the layers in a stage share the same channel dimension.
For the training phase, we also use an auxiliary head that consists of three fully-
connected layers with an auxiliary weight of 0.4 as proposed by the prior work [8].

5.2 Performance of the differentiable channel search

To evaluate the effectiveness of the proposed FlexCHarts method, we first com-
pare it against the DMaskingNAS method, which has a fixed search space. Be-
cause the effectiveness and efficiency of DMaskingNAS method is highly sensitive
to their predefined range of channel dimensions, we create two baselines that rep-
resent DMaskingNAS methods with small and large range of channel dimensions,
which we simply refer to as DMask-small and DMask-large. The details of these
search spaces are deferred to the Appendix.

To mimic target inference platforms with different resource constraints, we
perform our experiments under low- and high-resource scenarios. For the low-
resource scenario, we prioritize the computational requirements of the searched
DNN architectures and target an inference latency under 0.3 millisecond per
sample. In contrast, for the high-resource scenario, we prioritize the accuracy
and aim for DNN architectures that achieve a top-1 test accuracy higher than
96% on CIFAR10. We adjust the latency coefficients (i.e., λ in Eq. 3) to fulfill
these accuracy and computational complexity requirements.

Flexible Channel Dimensions for Differentiable Architecture Search 11

Table 1: Results of the DMaskingNAS and FlexCHarts methods targeting low
and high-resource scenarios. Check and cross marks indicate whether the re-
quirement is satisfied or not.

Evaluation Search

Scenario
Search Top-1 acc. Latency FLOPS Search time Search

algorithm (%) (ms) ×109 (GPU-hours) memory (GB)

Low-resource
(<0.3ms latency)

DMask-small 95.62 0.366 () 0.258 2.63 10.3
DMask-large 93.40 0.288 () 0.095 5.75 28.3
FlexCHarts 94.10 0.287 () 0.093 3.36 16.6

High-resource
(>96% accuracy)

DMask-small 95.67 () 0.452 0.433 2.74 12.0
DMask-large 96.06 () 0.606 0.736 5.78 28.3
FlexCHarts 96.04 () 0.654 0.773 4.37 19.1

Table 1 summarizes the results of our experiments with the FlexCHarts,
DMask-small, and DMask-large methods under the low- and high-resource sce-
narios. For the low-resource scenario, while the DMask-small method has the
highest top-1 accuracy and lowest search time and memory, it fails to find a
DNN architecture that achieves the target of 0.3 millisecond inference latency
per batch due to its limited channel range. The DMask-large and FlexCHarts
methods succeed to find DNN architectures that achieve the given inference la-
tency target. However, the DMask-large method requires 5.75 GPU-hours and
28.3 GB of memory to find the DNN architecture as it needs to train a larger
supernet whereas the FlexCHarts method finds an equivalent architecture only
in 3.36 GPU-hours and using 16.6 GB of memory.

The FlexCHarts method also outperforms the DMaskingNAS method in the
high-resource scenario. Due to its limited range of channel dimensions, DMask-
small fails to find a DNN architecture that is large enough to achieve a top-
1 accuracy greater than 96%. In contrast, both DMask-large and FlexCHarts
methods are able to find DNN architectures with the target accuracy require-
ments. Similarly to the low-resource scenario, the DMask-large method requires
5.78 GPU-hours and 28.3 GB of memory to achieve this goal whereas the Flex-
CHarts method finds an equivalent DNN architecture in 4.37 GPU-hours and
using 19.1 GB of memory.

These experiments clearly show that the proposed FlexCHarts method can
find the channel dimensions that meet the requirements of varying resource con-
straints and optimization goals without the restrictions of a fixed search space.
Moreover, it does not require to train a redundantly large supernet, thus it
searches for the channel dimensions efficiently with lower GPU-hours and mem-
ory requirements than the DMaskingNAS methods.

5.3 Comparison with other dimension adaptation methods

We now proceed with the experiments that compare the proposed FlexCHarts
method against other channel dimension scaling methods. For this purpose, we
use the following baselines: WideResnet architectures [16], which proposes to

12 A. C. Yüzügüler et. al

0.5 1.0 1.5
GFlops

91

92

93

94

95

96

To
p-

1
Ac

cu
ra

cy
 (%

)

FlexCHarts
WideResnet-22
EfficientNet

Fig. 4: Accuracy on CIFAR10 versus computational complexity in terms of
FLOPS for various channel dimensions found by FlexCHarts as well as the base-
line WideResnet and EfficientNet architectures.

scale DNN architectures by simply multiplying its channel dimensions by a pre-
determined coefficient, and EfficientNet architectures [13], which proposes com-
pound scaling, in which the depth and width are scaled uniformly by a coefficient.

In these experiments, we use WideResnet with a depth of 22 and width
factors of 1, 2, and 4 and EfficientNet with its four largest variants, namely
B6, B7, B8, and L2, which requires a similar range of FLOPS with the DNN
architectures found by FlexCHarts. To eliminate the performance discrepancies
caused by differences in their implementations, we compare their computational
complexity in terms of FLOPS. For different search runs with FlexCHarts, we
used the latency coefficients (λ) varying between 1e− 3 and 1e− 1. We train all
DNN architectures using the same training parameters given in Section 5.1.

Fig. 4 shows the top-1 accuracy and FLOPs requirements of the DNN ar-
chitectures found by the proposed FlexCHarts method as well as the baseline
methods. Because FlexCHarts can automatically search the optimal channel di-
mensions within a flexible range, the architectures found by FlexCHarts achieve
between 0.5-1% and 2-4% better accuracy than WideResnet and EfficientNet
for similar FLOPS requirements, respectively. Moreover, the effectiveness of the
channel scaling methods used in WideResnet and EfficientNet is highly sensitive
to the design of initial DNN architectures, which requires heuristics and manual
development efforts. In contrast, the proposed FlexCHarts method finds chan-
nel dimensions that achieve better accuracy and/or FLOPS and it does so in a
completely automatic fashion.

6 Conclusion

In this work, we addressed the limitations of neural architecture search methods
that have fixed search space for channel dimensions. We redefined the architec-

Flexible Channel Dimensions for Differentiable Architecture Search 13

tural variables in the differentiable channel masking method to enable searching
for channel dimensions in a flexible and smooth way. We also introduced a new
dynamic channel allocation mechanism that allows changing the kernel dimen-
sions efficiently during the search in order to dynamically adapt to the target
channel dimensions.

Through extensive experiments, we demonstrated that the proposed Flex-
CHarts framework finds optimal channel dimensions for DNN architectures un-
der various resource constraints and performance objectives without the limita-
tions of the existing methods that use fixed search spaces. Moreover, it searches
the optimal channel dimensions faster and with reduced memory requirements
than the existing methods.

References

1. Bender, G., Kindermans, P., Zoph, B., Vasudevan, V., Le, Q.V.: Understanding and
simplifying one-shot architecture search. In: Proceedings of the 35th International
Conference on Machine Learning, ICML. vol. 80, pp. 549–558 (2018)

2. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. In: Advances in Neural Information Processing Systems 24: 25th An-
nual Conference on Neural Information Processing Systems. pp. 2546–2554 (2011)

3. Ci, Y., Lin, C., Sun, M., Chen, B., Zhang, H., Ouyang, W.: Evolving search space
for neural architecture search. In: 2021 IEEE/CVF International Conference on
Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021. pp.
6639–6649 (2021)

4. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural net-
works with cutout. arXiv (2017)

5. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: 3rd Inter-
national Conference on Learning Representations, ICLR (2015)

6. Krizhevsky, A.: Learning multiple layers of features from tiny images pp. 32–33
(2009)

7. Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L., Fei-Fei, L., Yuille,
A.L., Huang, J., Murphy, K.: Progressive neural architecture search. In: Computer
Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September
8-14, 2018, Proceedings, Part I. vol. 11205, pp. 19–35 (2018)

8. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: 7th
International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019 (2019)

9. Marchisio, A., Massa, A., Mrazek, V., Bussolino, B., Martina, M., Shafique, M.:
Nascaps: A framework for neural architecture search to optimize the accuracy and
hardware efficiency of convolutional capsule networks. In: IEEE/ACM Interna-
tional Conference On Computer Aided Design, ICCAD. pp. 114:1–114:9 (2020)

10. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture
search via parameter sharing. In: Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018. vol. 80, pp. 4092–4101 (2018)

11. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image clas-
sifier architecture search. In: The Thirty-Third AAAI Conference on Artificial In-
telligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial In-
telligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational

14 A. C. Yüzügüler et. al

Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January
27 - February 1, 2019. pp. 4780–4789 (2019)

12. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.:
MnasNet: Platform-aware neural architecture search for mobile. In: IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach,
CA, USA, June 16-20, 2019. pp. 2820–2828. Computer Vision Foundation / IEEE
(2019)

13. Tan, M., Le, Q.V.: EfficientNet: Rethinking model scaling for convolutional neu-
ral networks. In: Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA. vol. 97, pp.
6105–6114 (2019)

14. Wan, A., Dai, X., Zhang, P., He, Z., Tian, Y., Xie, S., Wu, B., Yu, M., Xu, T., Chen,
K., Vajda, P., Gonzalez, J.E.: Fbnetv2: Differentiable neural architecture search
for spatial and channel dimensions. In: 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020.
pp. 12962–12971 (2020)

15. Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia,
Y., Keutzer, K.: Fbnet: Hardware-aware efficient convnet design via differentiable
neural architecture search. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. pp. 10734–
10742 (2019)

16. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: Proceedings of the
British Machine Vision Conference 2016, BMVC (2016)

17. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In:
5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings (2017)

18. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: 2018 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018. pp.
8697–8710 (2018)

A Appendix

Flexible Channel Dimensions for Differentiable Architecture Search 15

Table 2: Channel ranges of DMask-small and Dmask-large baselines for the ex-
periments in Section 5.2.

DMask-small DMask-large DMask-systolic
Cell id start end step start end step start end step

0 24 32 8 16 160 16 16 200 8
1 24 32 8 16 160 16 16 200 8
2 24 32 8 16 160 16 16 200 8
3 24 32 8 16 160 16 16 200 8
4 24 32 8 16 160 16 16 200 8
5 24 32 8 16 160 16 16 200 8
6 48 64 8 16 160 16 16 200 8
7 48 64 8 16 160 16 16 200 8
8 48 64 8 16 160 16 16 200 8
9 48 64 8 16 160 16 16 200 8
10 48 64 8 16 160 16 16 200 8
11 48 64 8 16 160 16 16 200 8
12 48 64 8 16 160 16 16 200 8
13 96 160 16 16 160 16 16 200 8
14 96 160 16 16 160 16 16 200 8
15 96 160 16 16 160 16 16 200 8
16 96 160 16 16 160 16 16 200 8
17 96 160 16 16 160 16 16 200 8
18 96 160 16 16 160 16 16 200 8
19 96 160 16 16 160 16 16 200 8

	Flexible Channel Dimensions for Differentiable Architecture Search

