U-Boost NAS: Utilization-Boosted Differentiable Neural Architecture Search

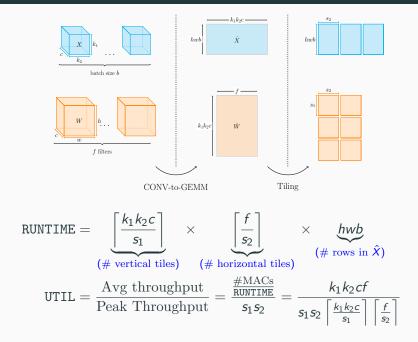
Ahmet Caner Yüzügüler Nikolaos Dimitriadis[‡] Pascal Frossard

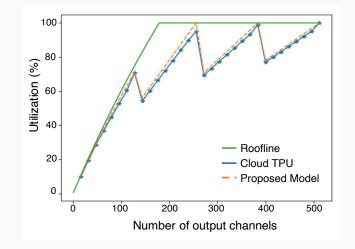
EPFL

European Conference on Computer Vision 2022

Tel Aviv, October 23-27, 2022

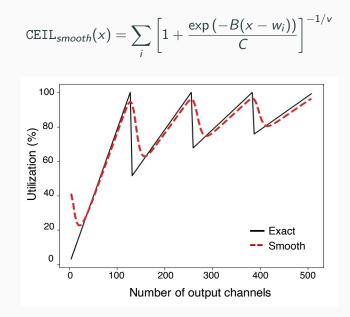
: presenter





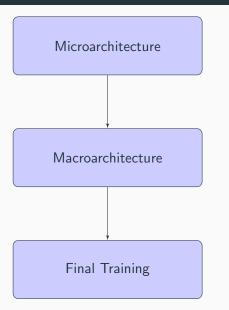
- inference latency is crucial in resource-constraint settings
- current DNN models are underutilizing resources
- no prior work optimizes for hardware utilization

Modeling Resource Utilization in Inference Platforms


Utilization in the real-world

$$\text{UTIL} = \frac{k_1 k_2 c f}{s_1 s_2 \left\lceil \frac{k_1 k_2 c}{s_1} \right\rceil \left\lceil \frac{f}{s_2} \right\rceil} \xrightarrow{f=s_2} \frac{k_1 k_2 c}{s_1 \left\lceil \frac{k_1 k_2 c}{s_1} \right\rceil} = \begin{cases} 1, & k_1 k_2 c = s_1 \\ 0.5, & k_1 k_2 c = s_1 + 1 \end{cases}$$

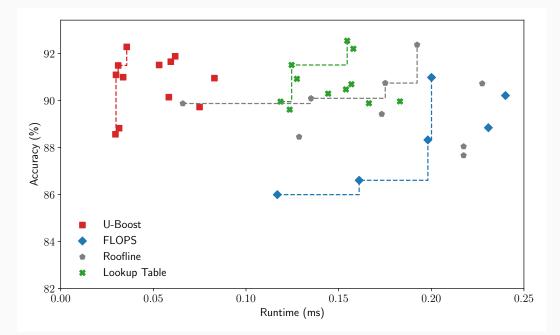
Proposed Method


Smooth Approximation of ceiling function

Let \mathcal{F} be the hypothesis class of the search space and $\alpha \in \mathcal{F}$ the candidate architecture defining the function $f_{\alpha} : \mathcal{X} \to \mathcal{Y}$ for input and output domains \mathcal{X} and \mathcal{Y} :

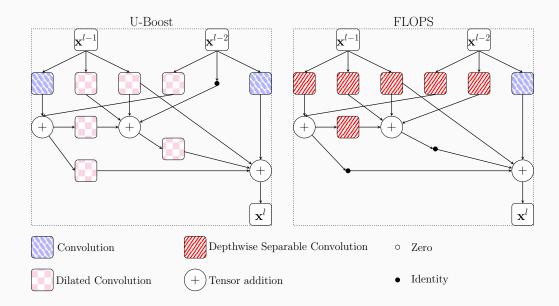
$$\mathcal{L}(\mathbf{x}, y, \alpha) = \mathcal{L}_{classification}(f_{\alpha}(\mathbf{x}), y) + \lambda \cdot \mathcal{L}_{latency}(\alpha) - \beta \cdot \mathcal{L}_{utilization}(\alpha)$$

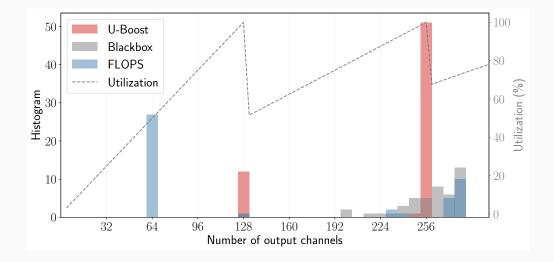
Hierarchical three-stage Neural Architecture Search


layer types and connections with single-cell model (fixed channel dims)

optimal channel dims search cell-wise for model with k sequential cells

train the selected architecture $\alpha \in \mathcal{F}$


Experiments


CIFAR10 experiments

	Acc. (%, \uparrow)		Runt.	Runt. (ms, \downarrow)		Util. (%, \uparrow)		HV (\downarrow)	# Params	
λ	0.1	1.0	0.1	1.0		0.1	1.0	(across λ)	0.1	1.0
Blackbox	87.5	87.8	4.8	4.05		69.3	68.5	49.4	70.5	55.5
Roofline	86.5	84.0	4.7	3.5		6.8	4.8	72.2	13.7	5.7
FLOPS	87.2	78.4	6.1	3.45		5.5	3.1	108	14.4	3.5
U-Boost	<u>87.8</u>	<u>87.9</u>	<u>2.2</u>	<u>1.05</u>		<u>91.1</u>	<u>78.6</u>	12.7	47.3	30.1

Cell microarchitecture: U-boost vs Baselines

Acknowledgments

The work of Ahmet Caner Yüzügüler was supported by the Hasler Foundation (Switzerland) and Nikolaos Dimitriadis was supported by Swisscom (Switzerland) AG.