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ABSTRACT

In this paper, we study an emerging class of neural networks, the
Morphological Neural networks, from some modern perspectives.
Our approach utilizes ideas from tropical geometry and mathemati-
cal morphology. First, we state the training of a binary morpholog-
ical classifier as a Difference-of-Convex optimization problem and
extend this method to multiclass tasks. We then focus on general
morphological networks trained with gradient descent variants and
show, quantitatively via pruning schemes as well as qualitatively,
the sparsity of the resulted representations compared to FeedForward
networks with ReLU activations as well as the effect the training op-
timizer has on such compression techniques. Finally, we show how
morphological networks can be employed to guarantee monotonic-
ity and present a softened version of a known architecture, based on
Maslov Dequantization, which alleviates issues of gradient propaga-
tion associated with its “hard” counterparts and moderately improves
performance.

Index Terms— Tropical Geometry, Morphological Neural Net-
works, Monotonicity, Pruning, Maslov Dequantization

1. INTRODUCTION

During the last decade, Neural Networks have been the focal point of
machine learning research, especially in the dawn of the Deep Learn-
ing era. Most architectures utilize the multiply-accumulate scheme
of the linear perceptron that feeds into a nonlinearity. An alternative
approach lies on the use of morphological neurons, first introduced
by Davidson and Hummer [1]. This approach was extended by Ritter
and Sussner, where a simple network consisting of a single hidden
layer was proposed for binary classification tasks resulting in a deci-
sion boundary parallel to the axes [2]. This limitation was addressed
in two major ways, either by extending the architecture to a second
hidden layer, where numerous such hyperplanes can be learned al-
lowing the solution of arbitrary (binary) classification tasks [3] or by
adding the option of hyperplane rotation [4].

Recently, the field of tropical geometry has been associated with
this class of morphological networks [5, 6, 7, 8, 9, 10]. Tropical
geometry studies piecewise linear (PWL) surfaces whose arithmetic
is governed by a tropical semiring, where ordinary addition is re-
placed by the maximum or minimum and ordinary multiplication
is replaced by ordinary addition. We refer to these algebraic struc-
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tures as (max,+) and (min,+) semirings, respectively. These two
semirings are dual and linked via the isomorphism φ(x) = −x.

Ritter, Sussner, and Diza-de-Leon introduced the term of mor-
phological networks by replacing addition and multiplication with
maximum and addition [11, 12]. This process is called tropical-
ization and yields a path towards tropical mathematics. This con-
nection was exploited by Charisopoulos and Maragos who explored
these networks via the tropical prism [5, 6]. A similar class, the
min−max classifiers, was studied by Yang and Maragos in the
Probably Approximately Correct (PAC) context and was associated
with Boolean functions as a lattice-based generalization [13]. Pessoa
and Maragos proposed a hybrid neuron consisting of morphological
and linear terms where the output is the combination of a classical
and a morphological perceptron [14]. The aforementioned works ad-
dressed training problems stemming from the non-differentiability
of the morphological operators and proposed training algorithms
specific to the models.

Neural Networks have also been proposed to address mono-
tonicity constraints. Archer and Wang proposed a neural network
for binary classification tasks, where the training algorithm dimin-
ishes the weights of the samples which violate the monotonicity
constraints resulting in a network with only positive weights [15].
Other researchers proposed imposing positive weights in a single
hidden network that feeds into a sigmoid at the output stage. How-
ever, Velikova, Daniels, and Feelders showed that this approach re-
quires K hidden layers to approximate a K-dimensional monotonic
surface [16]. On the other hand Sill proposes a network architecture
that guarantees monotonicity for the output [17], which is extended
by Daniels and Velikova to incorporate partially monotone functions
[18] and can be viewed as a special case of the min−max networks
[13].

In this paper, we propose various improvements and extensions
of previous works in the context of morphological networks. In
Section 3 we extend a training process for morphological networks
based on Difference-of-Convex optimization to tackle general mul-
ticlass classification tasks. Section 4 explores the compression abil-
ities of Dense Morphological Networks [19] and draws favorable
conclusions in comparison with their linear counterparts. In Section
5 we study how Sill’s network architecture can be leveraged to guar-
antee shape properties for the output function, such as monotonicity,
and present a softened version of the network via Maslov Dequan-
tization which addresses training issues and improves performance.
More details can be found in [20].

2. BACKGROUND CONCEPTS

For x ∈ Rn, the tropical max-plus polynomial p∨ is defined as the
maximum of many affine terms: p∨(x) = maxi{a>i x + bi} =
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∨
i a
>
i x+ bi. The max-plus polynomial generates convex PWL sur-

faces. Its min-plus equivalent arises from replacing max (∨) with
min (∧) and produces concave PWL surfaces. The max-plus and
min-plus polynomials are related to the dilation (δ) and erosion (ε)
operators of mathematical morphology, respectively.

The tropical polynomials yield PWL surfaces, also referred as
hinging hyperplanes by Wang and Sun [21], which are a collection
of affine terms jointed by edges where multiple terms dominate, i.e.
are maximizers or minimizers. These edges form the tropical hyper-
surface and correspond to the boundaries among local affine func-
tions, generating “hard” surfaces. By approximating the min and
max operators, a softened version with no hard edges is achieved
via the Maslov Dequantization:

Definition 1 (Maslov Dequantization [22, 23, 24]). Let x, y ∈ R
and h > 0. The transformation x ∨h y = h log(e

x/h + e
y/h) de-

fines the Maslov Dequantization of the max operator, yielding its
soft approximation. Similarly, the Maslov Dequantization of the
min operator is x ∧h y = −h log(e−x/h + e−

y/h). As h → 0,
the soft versions approach the hard ones: limh→0 x ∨h y = x ∨ y
and limh→0 x ∧h y = x ∧ y. For small positive values of h, these
approximations are part of the Log-Sum-Exp family, used in convex
analysis and recently linked to tropical polynomials [25, 26]. We use
the reciprocal of h, the hardness parameter β = h−1.

3. TRAINING MORPHOLOGICAL NETWORKS VIA
CONVEX-CONCAVE PROCEDURE

Let us consider the task of classifying the pattern xi ∈ Rn, i =
1, 2, . . . , N to two distinct classes,N for negative (yi = −1) and P
for positive (yi = +1). Given an input x ∈ Rn and weight vectors
w,m ∈ Rn+1, dilation δw and erosion εm compute the following
activations respectively:

δw(x) = w0 ∨
(∨

wi + xi
)

(1)

εm(x) = m0 ∧
(∧

mi + xi
)

(2)

The Dilation-Erosion Perceptron (DEP) results from their convex
combination and can be thought of as a feedforward neural network
with a single hidden layer consisting of two neurons, a dilation and
an erosion. A similar architecture is the Maxout Network [27] that
consists of the maximum of affine expressions which correspond to
general tropical polynomials. Charisopoulos and Maragos formulate
the problem of training a DEP classifier [5] as:

min

N∑
i=1

vimax{0, ξi}

s.t. λδw(xi) + (1− λ)εm(xi) ≥ −ξi ∀xi ∈ P,
λδw(xi) + (1− λ)εm(xi) ≤ +ξi ∀xi ∈ N

(3)

where ξi are slack variables which ensure that only misclassified
patterns are taken into account for the objective function and the
variables vi correspond to a weighting scheme proposed in [5] that
penalizes patterns with greater chances of being outliers. The above
formulation corresponds to a Difference-of-Convex optimization
problem, since the dilation term is convex, whereas the erosion term
is concave. Various methods have been proposed to tackle such
problems, with many focusing on the Fenchel Conjugate. We use
a heuristic called Convex-Concave Procedure (CCP), proposed by
Yuille and Rangarajan [28] and extended in [29, 30].

Valle proposes a greedy algorithm where the dilation and the
erosion perceptrons are trained separately and combined later by

minimizing the average hinge loss [31]. This method allows the in-
clusion of a regularization termC‖u− r‖1 in the objective function,
where u = w or u = m and r is a reference term.

The Dilation-Erosion Perceptron suffers from a major flaw as
a lattice-based model, it presupposes a partial ordering both on the
features and the classes. By simply inverting the classes N � P ,
the performance of the classifier might severely drop [31]. A way
to counteract this behavior lies on the use of reduced morphological
operators based on a reduced ordering:

Definition 2. Let R be a nonempty set, L be a complete lattice and
ρ : R → L be a surjective mapping. A reduced ordering, or r-
ordering, is defined as: x ≤ρ y⇔ ρ(x) ≤ ρ(y), ∀x,y ∈ R.

The DEP as well as its reduced variant, denoted as r-DEP, are
binary classifiers. The formulation of the classification problem 3
is reminiscent of Support Vector Machines (SVMs). Various meth-
ods have been proposed regarding the extension of SVM-based clas-
sifiers to multiclass problems. Notably, there are two major ap-
proaches: one-versus-the-rest and one-versus-one. Let us consider
a problem with K > 2 classes and N datapoints. In the former
approach, the positive class consists of the elements of Ck and the
negative class consists of the datapoints from all other classes C−k.
A straightforward issue with this approach lies on the imbalance of
the datasets, since for a relatively uniform distribution of datapoints
among classes, we have |Ck| ' N

K
� |C−k| ' (K−1)N

K
.

We employ the one-versus-one approach on the MNIST and
FashionMNIST [32] datasets. A single reduced Dilation-Erosion
Perceptron is used for every pair of classes and the final output on
a single element is the majority (hard) vote of all classifiers. Thus,
K(K−1)

2
= 10×9

2
= 45 distinct classifiers must be trained. A

bagging classifier is evaluated for various numbers, denoted as n,
of Radial Basis Function (RBF) kernel estimators. The results are
presented in Table 1 and are comparable with those achieved using
traditional methods of training (morphological) neural networks,
presented in the next section. However, these methods concern
models with many more parameters as the networks are both denser
and deeper. Moreover, training via CCP is robust; repeating the
experiments 10 times showed that the variation of the method is
much lower than methods based on stochastic optimization such as
gradient descent variants. We believe that with further experimenta-
tion, concerning both the selection of the kernel type as well as the
number of kernel used, performance can be improved.

MNIST FashionMNIST

n = 5 97.72± 0.01 88.21± 0.01
n = 10 97.72± 0.01 88.07± 0.01
n = 15 97.67± 0.01 88.11± 0.01
n = 20 97.64± 0.01 88.12± 0.01

Table 1: Results of Bagging multiclass r-DEP with n RBF kernels.

4. PRUNING MORPHOLOGICAL NEURAL NETS

We extend the network of the previous section both in terms of den-
sity and depth. This family of networks is called Dense Morpholog-
ical [19]. An example is presented in Fig. 1. By letting the network
search for hidden representations of the input data, the major prob-
lem of constructing a surjective mapping ρ for the multiclass r-DEP
is alleviated. Compared to the CCP formulation, this approach al-
lows the parallelization of training and the use of optimized deep
learning libraries that take advantage of GPUs, resulting in faster



training. In this case, the models are trained with standard gradient
descent methods. We study two variants: (mini-batch) Stochastic
Gradient Descent (SGD) [33] and Adaptive Momentum Estimation
(Adam) [34]. Our focus lies not on achieving the highest possible
accuracy, but on showing the compression ability of morphological
networks compared to traditional ones. To this end, we apply prun-
ing techniques to evaluate the ability of the various networks to retain
information with a fraction of the original nodes.

Regarding the hidden layer, the models studied include: only
dilation neurons (denoted as δ), only erosion neurons (ε), a mixed
network with both types of neurons (δ, ε) as well as a Feedforward
neural networks with ReLU activations (FF-ReLU) for comparison.
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Fig. 1: Dense Morphological Network with 2 hidden layers. Square
nodes correspond to morphological operators, either min or max.

The output layer is fully connected.

All models are structurally identical, consisting of 400 neurons
in the hidden layer. The experiments focus on visual recognition
tasks and the datasets selected remain the same as in Section 3. The
training lasts 50 epochs. After experimentation, we conclude that the
best learning rates for Adam and SGD are η = 0.001 and η = 0.09,
respectively. The results are presented in the first rows of each panel
(one for each dataset) in Table 2.

We apply a simple pruning scheme based on the `1 norm [35] to
keep salient features and discard unimportant ones. The method con-
cerns the weights of the hidden layer where the bulk of parameters
is. Furthermore, the output layer is a fully connected one and, thus,
does not offer room for improvement. Various amounts of units are
pruned and the performance of the remaining network is evaluated
on the test set (see other rows of Table 2). The results show that the
morphological network has superior compression capabilities than
its more traditional counterpart. To be more specific, shades of red
are used in Table 2 to showcase the degree of deterioration in ac-
curacy, while green communicates the absence of performance loss
between the unpruned net and the one using only 1% of the param-
eters (in the hidden layer). In both datasets and for both optimizers,
the morphological network outperforms FF-ReLU, with the effect
more evident on the more complex dataset, FashionMNIST. An-
other insight is that in both types of networks, the (mini-batch) SGD
outperforms Adam in terms of sparsity even though it lacks slightly
behind performance-wise on the full (unpruned) network.

These observations can be explained qualitatively by plotting the
activations of the hidden layer (without bias terms). In Fig. 2, one
of the 400 nodes is selected for 4 different networks studied and the
flattened input is reshaped to a 28× 28 grid for displaying purposes.
The lighter color corresponds to a higher value. The activations of
the morphological networks are in stark difference with those of their
traditional counterparts, since high values characterize only a small

percentage of the parameters. Intuitively, this suggests that by keep-
ing only those parameters, performance should not be substantially
affected. Given the similar performance of the full networks, Fig. 2
shows, in conjunction with the results of Table 2, that morpholog-
ical networks utilize the same input data more efficiently. Finally,
the Adaptive Momentum Estimation results in higher performance,
but utilizes more connections than SGD. Thus, the pruning effect is
more severe on models trained via Adam.
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Fig. 2: Examples of hidden layer activations for various models
(MNIST dataset). (a) & (b) correspond to a morphological network

(dilation neurons), whereas (c) & (d) correspond to FF-ReLU.

5. MONOTONICITY CONSTRAINTS

We examine how morphological network architectures can be lever-
aged to guarantee monotonicity, where the output of the network
does not decrease with with the increase of the input. Without loss
of generality, we consider only monotonically increasing functions.
Sill [17] proposes a min-pooling layer preceded by max-affine terms
for learning monotonic functions. The network is presented in Fig.
3 and produces the following output for the pattern x ∈ Rn:

y = f(x) =
∧
k∈[K]

∨
j∈[J]

{w>k,jx+ bk,j} (4)

A general monotonic surface is neither convex nor concave.
As stated in Section 2, max-plus (min-plus) terms construct convex
(concave) outputs and their combination yields a more general func-
tion, which can approximate any monotone function to an arbitrary
degree of accuracy [17, Theorem 3.1]. Monotonicity constraints
are enforced by limiting the weight vector to nonnegative values
w ∈ Rn≥0 via a function with a positive image, such as an exponen-
tial transformation wi = ezi , zi ∈ R [17] or wi = z2i , which allows
for flat surfaces [16].

The output is a PWL approximation of the input data. From a
mathematical morphology viewpoint, the application of max term
(dilation) followed by a min (erosion) yields an output similar to a
closing. Each max term consists of J hyperplanes and constructs
a group and Sill describes as active the group that determines the
output for pattern x ∈ Rn. In the case of strictly positive weights,
the transformation is reversible and corresponds to a morphological
opening x = f−1(y) =

∨
k∈[K]

∧
j∈[J]{w

−1
k,j(y − bk,j)} [36]. Sill

uses a gradient descent training algorithm variant where the gradient
for each hyperplane is computed by the error of the patterns corre-
sponding to the active hyperplane at each iteration. We propose a
softening of the morphological operators max and min via Maslov
Dequantization (see Def. 1), which alleviates the undifferentiability
of the the min and max operators. More specifically, the morpho-
logical operators are selective in the sense that a single element xi
of the input vector x is solely responsible for the output. Thus, in
the backpropagation step, only xi’s parameters are updated. In the
context of the Sill network, this implies that only the active hyper-
plane’s weights are updated for a given pattern. Given low initial-
ized weight parameters, we observed that the output of the network



Adaptive Momentum Estimation Stochastic Gradient Descent

p δ ε (δ, ε) FF-ReLU δ ε (δ, ε) FF-ReLU

M
N
I
S
T

100% 97.62 96.17 97.95 98.13 94.86 93.36 96.07 98.16
75% 97.62 96.18 97.93 98.15 94.86 93.36 96.07 98.12
50% 97.62 96.22 97.90 98.17 94.86 93.37 96.07 98.08
25% 97.62 96.09 97.87 97.51 94.86 93.40 96.06 98.01
10% 97.62 95.78 97.74 93.38 94.86 93.38 96.09 96.67

7.5% 97.62 95.42 97.76 90.17 94.86 93.38 96.10 95.56
5% 97.62 94.51 97.66 83.39 94.86 93.40 96.10 92.96

2.5% 97.62 93.43 97.37 68.93 94.86 93.39 96.09 80.48
1% 97.62 91.17 97.08 44.22 94.86 93.38 96.08 58.07

F
a
s
h
i
o
n
M
N
I
S
T

100% 86.31 86.82 88.32 88.82 82.06 85.23 86.21 87.79
75% 86.30 86.81 88.30 88.88 82.00 85.23 86.21 87.75
50% 86.22 86.80 88.33 88.18 82.05 85.25 86.20 87.19
25% 85.95 86.85 88.31 82.15 81.90 85.26 86.28 84.35
10% 85.58 86.27 88.05 65.89 81.67 85.27 86.23 73.22

7.5% 85.47 86.15 87.99 57.93 81.63 85.27 86.21 63.95
5% 85.37 85.81 87.76 49.12 81.52 85.24 86.22 47.73

2.5% 84.91 85.47 87.56 42.48 81.14 85.26 86.22 38.84
1% 81.14 84.86 86.85 28.13 80.68 85.27 86.18 35.46

Table 2: Performance of pruned networks on the MNIST and FashionMNIST datasets for various model architectures.
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Fig. 3: Monotonic network. The gray edges correspond to
nonnegative weights.

might result to a poor approximation of the data when using Adam
[34] as our training algorithm (without Sill’s hyperplane assignment
of patterns), since the updated hyperplanes dominate the groups, not
allowing the remaining (hyperplanes) to update their weights. One
method to alleviate this problem is using a gain parameterG to mag-
nify the initialized weights. This way, the weights of the dominating
hyperplane get diminished during the backpropagation step, allow-
ing the other hyperplanes to dominate in the next epochs. One way
to circumvent this issue completely is the proposed use of softened
morphological operators that do not have this problematic one-to-
one correspondence between a single input element and the output.

We use a simple example to illustrate this method. We consider
the strictly increasing function f(x) = x3 + x+ sinx, x ∈ [−4, 4].
We scale both the domain and the image of f to [−1, 1]. We sample
100 observations uniformly and corrupt them with additive i.i.d zero-
mean Gaussian noise ε ∼ N (0, σ2). We have used Glorot uniform
initialization for all network parameters [37]. The training lasts 1000
epochs using Adam with η = 0.01. We use isotonic regression
[38] for comparison. The results are presented in Table 3 for K =
J = 5 and the outputs of the various methods for σ = 0.15 in Fig.
4. For the monotonic net, we select gain parameter G = 20 for
the initialization of the weights. For the smooth monotonic net, we
select hardness parameter β = 5.

From Table 3, we conclude that the smooth monotonic net out-
performs the other methods for all noise levels σ. Moreover, its train-

ing procedure is less involved than Sill’s assignment of patterns to
hyperplanes during each step or the use of an arbitrary gain parame-
ter G for initializing the weights.

σ 0.05 0.1 0.15 0.2

Linear Reg. 0.0236 0.03077 0.04827 0.0505
Isotonic Reg. 0.0042 0.01112 0.02557 0.0417

Sill Net 0.00305 0.01107 0.02401 0.0390
Smooth Sill Net 0.00294 0.00938 0.02302 0.0386

Table 3: RMS error of monotonic regression methods with noise
ε ∼ N (0, σ2)
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Fig. 4: Comparison of monotonic regression methods

6. CONCLUSION

Tropical geometry and mathematical morphology offer the mathe-
matical foundations to analyze neural networks with min and max
terms. In this work, we studied such networks with respect to their
training, their compression ability and a method of enforcing mono-
tonicity constraints. To this end, we extended a training algorithm
based on nonconvex optimization to general (multiclass) classifica-
tion tasks. Also, we explored the ability of (dense) morphological
networks to efficiently construct hidden representations of the input
data and retain information with minimal or zero accuracy loss de-
spite heavy pruning and showed how they outperformed their linear
equivalents. Finally, we used Maslov Dequantization in a known
architecture for monotonic regression, in order to improve conver-
gence and accuracy.
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