
ADVANCES IN THE TRAINING, PRUNING AND ENFORCEMENT OF
SHAPE CONSTRAINTS OF MORPHOLOGICAL NEURAL

NETWORKS USING TROPICAL ALGEBRA

Dimitriadis Nikolaos
École Polytechnique Fédérale de Lausanne

Lausanne Switzerland
nikolaos.dimitriadis@epfl.ch

Petros Maragos
National Technical University of Athens

Athens, Greece
maragos@cs.ntua.gr

ABSTRACT

In this paper we study an emerging class of neural networks based on the morphological operators of
dilation and erosion. We explore these networks mathematically from a tropical geometry perspective
as well as mathematical morphology. Our contributions are threefold. First, we examine the training
of morphological networks via Difference-of-Convex programming methods and extend a binary
morphological classifier to multiclass tasks. Second, we focus on the sparsity of dense morphological
networks trained via gradient descent algorithms and compare their performance to their linear
counterparts under heavy pruning, showing that the morphological networks cope far better and
are characterized with superior compression capabilities. Our approach incorporates the effect of
the training optimizer used and offers quantitative and qualitative explanations. Finally, we study
how the architectural structure of a morphological network can affect shape constraints, focusing on
monotonicity. Via Maslov Dequantization, we obtain a softened version of a known architecture and
show how this approach can improve training convergence and performance.

Keywords Tropical Geometry · Mathematical Morphology · Morphological Neural Networks · Monotonicity ·
Sparsity · Pruning ·Maslov Dequantization

1 Introduction

In the past decade, the field of neural networks has garnered research interest in the machine learning community,
paving the way for the formation of a novel field called Deep Learning. The cell of the models is the neuron, introduced
by Rosenblatt. The neuron mimics the transformations of data performed in biological organisms. In mathematical
terms, it consists of a multiply-accumulate scheme that is succeeded by a nonlinearity, called activation function. An
alternative lies in morphology-based models.

In morphological neural networks the operations of addition and multiplication of the aforementioned multiply-
accumulate scheme are replaced by maximum (or minimum) and addition, respectively. This process is called
tropicalization and yields a path towards tropical mathematics. An important aspect of the operator change is the
lack of need for an activation function, since maximum (or minimum) are inherently nonlinear operations. Networks
with this modified neuron have been studied in the context of neural networks [1, 2, 3, 4, 5]. Recently, the field of
tropical geometry has been linked with this class of morphological networks [6, 7, 8, 9, 9]. Tropical geometry studies
piecewise linear (PWL) surfaces whose arithmetic is governed by a tropical semiring, where ordinary addition is
replaced by the maximum or minimum and ordinary multiplication is replaced by ordinary addition. We refer to these
algebraic structures as (max,+) and (min,+) semirings, respectively. These two semirings are dual and linked via the
isomorphism φ(x) = −x.

∗ This work was performed when N.Dimitriadis was at the National Technical University of Athens.

ar
X

iv
:2

01
1.

07
64

3v
1

 [
cs

.L
G

]
 1

5
N

ov
 2

02
0

arXiv

In this paper, we study morphological networks via mathematical constructs stemming from mathematical morphology,
lattice theory and tropical algebra. Our contributions are multifaceted and can be summarized as follows:

• An alternative training process for morphological networks for general multiclass classification tasks is
presented. By formulating the classification problem as an instance of a Difference-of-Convex optimization
problem, the training can be performed with analytical and robust methods not based on stochastic optimization.

• We explore the compression abilities of morphological networks and draw favorable conclusions in compar-
ison with their linear counterparts. We show that morphological networks encode information with fewer
parameters.

• We present a method to enforce monotonicity on the output of a morphological network using smooth operator
approximations and show how the softened versions improve performance and training convergence.

The structure of the paper is the following. Section 2 reviews past work that motivate our findings. In Section 3 we
introduce some mathematical background concepts that accompany the ideas of the next sections and highlight the
connections of mathematical morphology and tropical geometry. In Section 4 we introduce an alternative method
of morphological neural network training based on a heuristic called Convex-Concave Procedure and proposed by
Charisopoulos and Maragos [6] and propose an extension to general (i.e. multiclass) classification problems. In
Section 5 we study denser morphological networks and shift our focus from accuracy to sparsity. We use a pruning
method to evaluate how the removal of parameters affects performance on both morphological networks and their linear
counterparts concluding with the former’s superiority in that regard. Section 6 explores regression with monotonicity
constraints and focuses on neural network methods, exploring the smoothening of the "hard" morphological operators
min and max to achieve better performance and simultaneously alleviate some training issues. Section 7 includes
concluding remarks.

2 Related Work

Davidson and Hummer introduced the morphological neuron [10], aiming at learning morphological elements such as
erosion and dilation. These efforts were intensified and led to more general models, such as a simple network with a
hidden layer tasked to solve binary classification problems [1]. These models use different operators than addition and
multiplication and are rooted in Mathematical Morphology and Lattice Theory [11]. The model proposed by Ritter and
Sussner [1] constructs a decision boundary parallel to the axes, a limitation that has been addressed in two major ways.
First, the architecture was extended to include a second hidden layer [3]. This modification allows the network to learn
multiple axis-parallel decision boundaries and, thus, tackle more general problems. Second, Barmpoutis and Ritter
resolved this limitation by rotating the hyperplanes [12].

Ritter et al. introduced the term morphological networks by replacing addition and multiplication with maximum
and addition [2]. They focused on the storage and computing capabilities of associative memories based on the
morphological neuron. Ritter and Urcid link the morphological neuron with biological processes, introduce its dendritic
structure and show that morphological perceptrons with a single hidden layer can approximate any high dimensional
compact region within an arbitrary degree of accuracy [13]. Furthermore, Sussner and Esmi study such networks in the
prism of competitive learning, where the operator argmax is employed to create a winner-take-all strategy at the output
layer [14].

Yang and Maragos introduced the class of min-max classifiers which consist of two layers, one with max terms and one
with min terms. The models are trained within the context of Probably Approximately Correct (PAC) learning and can
be considered as a generalization of Boolean functions based on Lattice Theory [5]. Pessoa and Maragos proposed
a hybrid neuron that combines morphological and linear terms [4]. A common theme in the morphological network
literature is the formulation of gradient descent variants for training to address the issue of non-differentiability of
morphological operators.

Using the tropical mathematics framework, Charisopoulos and Maragos studied these networks and proposed a training
algorithm not rooted in stochastic optimization but rather on Difference-of-Convex Programming [6] and provided
lower bounds for the linear regions of such networks [7]. Zhang et al. study feedforward network with Rectified Linear
Unit (ReLU) activations and showed their equivalence with tropical rational maps [15]. Also, Calafiore et al. study
a similar class of networks with Log-Sum-Exp terms, which can be thought of as smooth approximations of the hard
morphological operators [16, 17]. Tropical mathematics have also been linked with sparse systems and the problem of
pruning models. [18] studies the sparsity of max-plus systems. Other works have focused on neural network pruning;
Smyrnis et al. develop a geometric algorithm for tropical polynomial division aimed at neural network minimization
[19] and extend this method to multiclass problems [9].

2

arXiv

In recent years, the field of morphological networks has adopted the trend of Deep Learning with increasingly more
complex architectures, both in terms of width as well as depth. Mondal et al. study dense morphological networks
by choosing the morphological operators of dilation and erosion as the basic operations of a neuron and overcome
their undifferentiability by considering smooth approximations [20]. Other works have focused on extending the
morphological setting to convolutional layers. Franchi et al. proposed a joint operation that includes pooling and the
morphological non-linearities [21], while Mellouli et al. employed the counter-harmonic mean to inject morphological
operations to convolutional layers and created an interpretable morphological convolutional neural network aimed at
digit recognition [22].

Morphological Neural Networks have also been proposed to address monotonicity constraints. First, in the context of
neural networks, Archer and Wang proposed to a heuristic which updates the weights of a binary classification model
so that samples do not violate the monotonicity constraints. The resulting network has only positive weights (for the
case of increasing monotonicity) [23]. A different approach lies in constraining the weights to positive values in a
neural network with a single hidden layer. This can be achieved through a monotonic nonlinear transformation with
a positive images such as the sigmoid function [24]. However, Velikova et al. showed that this approach requires K
hidden layers to approximate a K-dimensional monotonic surface [25]. On the other hand Sill proposes a network that
guarantees monotonicity for the output via architectural design [26]. This method is extended by Daniels and Velikova
to include cases of partially monotone functions [27]. Also, Sill’s work can also be considered a special case of the
min-max classifiers proposed by Yang and Maragos [5].

Apart from morphological networks, other monotonic methods have been proposed in the machine learning field. An
overview appears in [28]. Some efforts have been focused on interpolated look-up tables, where shape constraints
including monotonicity can be imposed [29, 30] and these ideas have also been applied in the context of deep networks
[31]. An alternative approach has been proposed by Wehenkel and Louppe, where monotonic functions are modeled via
neural network techniques by enforcing a positive image on the derivative of the monotonic function [32].

3 BACKGROUND CONCEPTS

In machine learning literature, the perceptron uses a multiply-accumulate scheme that feeds into an activation function
φ(·), which performs a nonlinear transformation. A graphical representation appears in Fig. 1. Specifically, the
perceptron consists of a weight vector a ∈ Rn and a bias term b ∈ R. These parameters are combined with the input
x ∈ Rn to compute the weighted sum f(x) = a>x+ b =

∑n
i=1 aixi + b, which then passes from the aforementioned

nonlinear filter. The tropical or morphological neuron has similar structure but performs different operations. The
operations of addition and multiplication are replaced by max (or min) and addition. This process is known as
tropicalization. A notable difference is the absence of a nonlinear activation function, since the operators max (or
min are inherently nonlinear. In the context of tropical algebra, we use the symbols � and �′ to denote max-plus
and min-plus matrix multiplication, respectively. These operations are defined as (A�B)ij =

∨k
q=1 aiq + bqj and

(A�′ B)ij =
∧k
q=1 aiq + bqj for matrices of appropriate dimensions.

x1

x2

xi

xp

...

...

∑

a
1

a2

ai

ap

φ(·)

b

Figure 1: Perceptron

3

arXiv

The operator change yields piecewise linear (PWL) surfaces. For x ∈ Rn, the tropical max-plus polynomial p∨ is
defined as the maximum of multiple affine terms:

p∨(x) = max
i
{a>i x+ bi} =

∨

i

a>i x+ bi, (1)

whilst its min-plus equivalent arises from replacing max with min. Examples of max-plus and min-plus polynomials
are presented in Fig. 2. The max-plus (min-plus) polynomial generates convex (concave) PWL surfaces. In the context
of mathematical morphology, these operators are often referred to as dilation δ and erosion ε, respectively, and are
defined as:

δw(x) = w0 ∨
(∨

wi + xi

)
(2)

εm(x) = m0 ∧
(∧

mi + xi

)
(3)

where w,m correspond to the weights of the dilation and the erosion neurons, respectively. These expressions are
special cases of tropical polynomials, since the term ai is specific and can be expressed as tropical matrix multiplications
as δw(x) = w> � x̃ and εm(x) = m> �′ x̃ where x̃ = [1 x], i.e. includes the bias term. Dilation and erosion are
commonly used in image processing. Given a pixel neighborhood, dilation outputs the pixel with the largest value.
Thus, bight objects are enlarged, while dark regions are shrank. The erosion operator performs the dual transformations.

1 2 3 4 5 6 7

1

2

3

4

5

x

y

f1(x) = −2x+ 4

f2(x) = −0.2x+ 3

f3(x) = 2x− 8

f4(x) = 0.3x+ 0.3

f(x) = max{f1(x), f2(x), f3(x), f4(x)}

(a) max-plus polynomial

1 2 3 4 5 6 7

1

2

3

4

5

x

y

f1(x) = 2x+ 2

f2(x) = 0.2x+ 3

f3(x) = −2x+ 12

f4(x) = −0.2x+ 5

f(x) = min{f1(x), f2(x), f3(x), f4(x)}

(b) min-plus polynomial

Figure 2: Constructing polynomials in the tropical semiring. In both cases, f4(x) has no bearing in the resulting surface.
This term can be removed.

A generalization of the tropical polynomials lies in the notion of hinging hyperplanes by Wang and Sun [33], which
are a collection of affine terms jointed by points where multiple terms dominate, i.e. are maximizers or minimizers.
These surfaces can be neither convex or concave and correspond to a lattice-theoretic view of these PWL surfaces, also
found in the works of Tarela et al. [34, 35]. The maximizers or minimizers are points that are not differentiable and are
responsible for the hard edges. In the case of strictly max-plus (or min-plus) PWL surfaces, this collection of points
is known as the tropical hypersurface T (p). The hard surfaces can be softened by approximating the min and max
operators, a process known as Maslov Dequantization:
Definition 1 (Maslov Dequantization [36]). Let x, y ∈ R and h > 0. The transformation x ∨h y = h log(ex/h + ey/h)
defines the Maslov Dequantization of the max operator, yielding its soft approximation. Similarly, the Maslov
Dequantization of the min operator is x ∧h y = −h log(e−x/h + e−y/h). As h→ 0, the soft versions approach the hard
ones: limh→0 x ∨h y = x ∨ y and limh→0 x ∧h y = x ∧ y (see proof in Appendix).

For small positive values of h, these approximations are part of the Log-Sum-Exp family, used in convex analysis and
recently linked to tropical polynomials [16, 17]. We use the reciprocal of h, the hardness parameter β = h−1.

4 Convex-Concave Procedure Training for General Classification Tasks

4.1 Binary Classification Problem formulation

In the neural network training context, the Gradient Descent algorithm and its variants [37] dominate the literature.
Network parameters are optimized with stochastic algorithms, allowing parallelization of the process, thus faster

4

arXiv

x1

x2

xi

xn

...

...

δw

εm

y

λ

1− λ

Figure 3: Dilation-Erosion Perceptron (DEP)

training, but sacrificing on robustness. Alternative methods have been proposed that eliminate the stochastic element
and offer low variance in the resulting models. A salient example lies in the Support Vector Machines (SVMs) literature,
where the training is formulated as a convex program [38], which allows the use of fast and robust algorithms. In the
current section, we explore a similar training scheme, based on Difference-of-Convex programming and extend its
applicability to multiclass problems.

Let us consider the task of classifying the pattern xi ∈ Rn, i = 1, 2, . . . , N to two distinct classes, N for negative
(yi = −1) and P for positive (yi = +1). Given an input x ∈ Rn and weight vectors w,m ∈ Rn+1, a dilation term
δw and an erosion term εm are combined to produce an output. The network is shown in Fig. 3 and carries the name
Dilation-Erosion Perceptron (DEP). A similar architecture lies in the maxout network [39], which uses the more general
notion of tropical polynomials (with arbitrary slopes ai, see (1)). Charisopoulos and Maragos formulate the training of
this classifier [6] as:

min

N∑

i=1

vimax{0, ξi}

s.t. λδw(xi) + (1− λ)εm(xi) ≥ −ξi ∀xi ∈ P,
λδw(xi) + (1− λ)εm(xi) ≤ +ξi ∀xi ∈ N

(4)

where ξi are slack variables and vi correspond to a weighting scheme. Specifically, the slack variables ξi ensure that
only misclassified patterns are taken into account for the objective function, whereas the weighting scheme allows
the attachment of higher importance to some misclassified patterns. Charisopoulos and Maragos propose penalizing
patterns with greater chances of being outliers. Specifically, for classes C0 = N and C1 = P:

vi =
λi

maxj λj
, λj =

1

‖xj − µk‖p
, µk =

1

|Ck|
∑

xi∈Ck
xi

The above training formulation (4) corresponds to a Difference-of-Convex (DC) optimization problem, since the dilation
term is convex whereas the erosion term is concave. This optimization class is vast and includes all C2 functions [40].
Various methods have been proposed to tackle such problems with many focusing on the Fenchel Conjugate. Another
approach lies in a heuristic called Convex-Concave Procedure (CCP), proposed by Yuille and Rangarajan [41] and
extended in [42, 43]. This heuristic is based on the observation that a DC program is convex iff the concave term, in
this case the erosion term, is affine. Hence, by convexifying this term, i.e. calculating its linear approximation via a
first-order Taylor series expansion, the problem becomes convex unlocking the ability of efficient and fast solutions.
Repeating this process yields the CCP. Lipp and Boyd extended this procedure by allowing the initialization of the
algorithm without a feasible point and improved convergence with the use of penalty terms [42]. CCP was further
extended [43] by the introduction of a structured method of defining DC problems which automatically converts them
in a form suitable for generic solvers [43]. We use such solvers in our experiments, see CVXPY [44].

Valle [45] proposes a modification of the formulation (4), where a greedy algorithm combines the dilation and the
erosion perceptrons, which are trained separately beforehand. This method allows the inclusion of a regularization term

5

arXiv

R(u) in the objective function, since one set of parameters is optimized. Valle proposes R(u) = C‖u− r‖1 , where
u = w or u = m and r is a reference term. The linear combination is calculated by minimizing the average hinge loss:

λ∗ = argmin
0≤λ≤1

N∑

i=1

max{0,−yi [λδw(xi) + (1− λ)εm(xi)]} (5)

As a lattice-based model, the Dilation-Erosion Perceptron suffers from a major flaw. Particularly, it presupposes a
partial ordering both on the features and the classes. This results in counterintuitive behavior. By simply inverting the
classes N � P , the problem intuitively does not change but mathematically it does, which is reflected on a severe drop
in performance [45]. A method to placate this issue can be found on the use of reduced morphological operators based
on a reduced ordering:
Definition 2 (reduced ordering). Let R be a nonempty set, L be a complete lattice and ρ : R → L be a surjective
mapping. A reduced ordering, or r-ordering, is defined as:

x ≤ρ y⇔ ρ(x) ≤ ρ(y),∀x,y ∈ R. (6)

Effectively, this means that a mapping ρ : Rn → Rm which transforms the input is used and the classification is
performed on the resulting dataset. Let the original dataset beD = {(xi, yi) ∈ Rn×{−1,+1} : i ∈ [N]}, the mapping
produces the following dataset Dnew = {(ρ(xi), yi) ∈ Rm × {−1,+1} : i ∈ [N]} and consists of m mappings
ρ(x) = [ρ1(x), ρ2(x), . . . , ρm(x)]> where ρi(x) : Rn → R, i ∈ [m] are mappings from the original input space to
the real numbers and are called kernels . Kernels are extensively used in Support Vector Machine modeling. Some
characteristic examples are presented in Table 1.

Kernel k(x,y)

Linear 〈x,y〉
Polynomial 〈1 + x,y〉d

Gaussian e−‖x−y‖
2/(2σ2)

Sigmoid tanh(γ 〈x,y〉+ r)

Table 1: Kernels

4.2 Extension to multiclass problems

The Dilation-Erosion Perceptron is inherently a binary classifier. As is the case with Support Vector Machines, this
classifier can be extended to tackle multiclass problems. Notably, there are two major approaches: one-versus-the-rest
and one-versus-one. Let us consider a problem with K > 2 classes. On both categories, the idea lies in the construction
of several models, all binary, and combine their outputs to produce a single prediction.

In the former approach, one classifier is trained for each class. In order to do so, the positive class consists of the
elements of said class Ck whereas the negative patterns consist of all the other classes C−k. A straightforward issue
with this approach lies on the imbalance of the datasets. Let N be the total number of datapoints and consider a
relatively uniform distribution of patterns among classes. Then, the positive class is much smaller than the negative:
|Ck| ' N

K � |C−k| '
(K−1)N

K . A way to address this issue is the use of weighting scheme: +1 for positive and
− 1
K for negative patterns. In the latter approach, one classifier is trained for every pair of classes and the prediction

is determined by the (hard) majority vote of the corpus of classifiers. The issue that emerges is the sheer number
of classifiers that have to be trained. For K classes, there are K(K−1)

2 pairs. However, each pair is trained on only
∼ 2

K ·N � N patterns.

In our experiments, we employ the one-versus-one approach with a greedy Dilation-Erosion Perceptron [45] on the
MNIST [46] and FashionMNIST [47] datasets. Thus, = 10×9

2 = 45 distinct classifiers must be trained. Each classifier
uses a Bagging approach with n Radial Basis Function (RBF) kernels . A Bagging classifier uses the same kernel, in
this case RBF, but the parameters are trained in different subsets of the original dataset. The results are presented in
Table 2 and are comparable with gradient-descent methods of training neural networks, presented in the next section.
Nevertheless, the networks presented in next sections are deeper and denser and, thus, have many more parameters. An
important aspect of this non-stochastic training method is robustness. Repeating the experiments 10 times yielded very
low variance in accuracy, a phenomenon that does not present when training with stochastic gradient descent variants.
An important aspect of this method is the kernel selection. Also, there is a different approach other than Bagging, the
Ensemble method, where different kernels are used but on the entire training set. Other parameterizations include the

6

arXiv

MNIST FashionMNIST

n = 5 97.72± 0.01 88.21± 0.01
n = 10 97.72± 0.01 88.07± 0.01
n = 15 97.67± 0.01 88.11± 0.01
n = 20 97.64± 0.01 88.12± 0.01

Table 2: Results of Bagging multiclass reduced DEP with n RBF kernels.

number and type of kernels. The combinations are vast and, with further experimentation, the results of Table 2 can be
improved.

5 Pruning Morphological Neural Nets

The Dilation-Erosion Perceptron has only two neurons in the hidden layer. A straightforward extension is the population
of the hidden layer with more neurons and/or the use of multiple hidden layers. This family of networks is called Dense
Morphological [20] and an instance is depicted in Fig. 4. The single dilation neuron of DEP is replaced by n1 and
n2 terms in the first and second hidden layer, respectively. Similarly for the erosion neuron. By stacking dilation and
erosion neurons on hidden layers, the network calculates activations similar to morphological openings and closings.

By increasing the number of parameters, both in depth and width, the network is able to search for effective hidden
representations of the input data, removing the major problem of selecting a surjective mapping ρ, which plagues the
multiclass DEP. The use of stochastic optimization methods for training allows for parallelization of the training process
and the utilization of optimized deep learning libraries that take advantage of Graphical Process Units (GPUs), resulting
in faster training. In this case, the models are trained with standard gradient descent methods. We study two variants:
(mini-batch) Stochastic Gradient Descent (SGD) and Adaptive Momentum Estimation (Adam) [48]. Our focus lies
not on achieving the highest possible accuracy, but on showing the compression ability of morphological networks
compared to traditional ones. To this end, we apply pruning techniques to evaluate the ability of the various networks to
retain information with a fraction of the original nodes.

x1

x2

xi

xn

...

...

δ1

...

δn1

ε1

...

εm1

δ1

...

δn2

ε1

...

εm2

h1

h2

hi

hc

...

...

y

closing

opening

Dilation neurons

Erosion neurons

Dilation-Erosion Layer

Dilation neurons

Erosion neurons

Dilation-Erosion Layer

Figure 4: Dense Morphological Network with 2 hidden layers. Square nodes correspond to morphological operators,
either min (erosion) or max (dilation). The output layer is fully connected.

A note on the notation of the models used. Regarding the hidden layer(s), the models studied include: only dilation
neurons (denoted as δ), only erosion neurons (ε), a mixed network with both types of neurons ((δ, ε)) as well as a
Feedforward neural networks with Rectified Linear Unit (ReLU) activations (FF-ReLU) for comparison. The smooth

7

arXiv

morphological networks are denoted with the subscript β. The experiments focus on visual recognition tasks and
the datasets selected remain the same as in Section 4, i.e. MNIST and FashionMNIST . The training lasts 50 epochs.
After experimentation, we conclude that the best learning rates differ for each optimizer and correspond to the values
η = 0.001 and η = 0.09 for Adaptive Momentum Estimation and Stochastic Gradient Descent, respectively. For the
Stochastic Gradient Descent, we omit networks with 2 hidden layers and the models with smooth operators, since our
experimental setup of 50 epochs does not yield competitive results, due to gradient propagation issues.

The results are presented in Table 3. The Adam algorithm yields higher accuracy for both datasets and both optimizers.
Also, the increase in density of the hidden layer is beneficial to accuracy but there is a diminishing returns effect; after
a certain amount of nodes in the hidden layer the performance boost is minimal. In both datasets, the linear model
FF-ReLU slightly outperforms the morphological equivalents. It is important to note that Mondal et al. [20] used a
different experimental setup (w.r.t. epochs1 etc.) and showed that morphological networks can in fact achieve higher
accuracy on these datasets compared to FF-ReLU. However, as stated above, our focus lies not on accuracy but on
compression ability.

Adaptive Momentum Estimation Stochastic Gradient Descent

] δ ε δ, ε 2(δ, ε) δβ , εβ FF-ReLU δ ε δ, ε FF-ReLU

MN
IS

T

32 94.36 87.12 92.19 92.73 92.85 96.54 92.83 82.40 90.00 97.00
64 96.12 91.74 94.92 95.15 95.03 97.53 94.65 87.98 93.00 97.56
128 96.90 94.91 96.59 96.33 96.93 98.07 95.29 91.68 94.73 97.92
256 97.30 94.98 97.42 97.08 96.95 98.13 96.10 91.81 95.74 98.02
400 97.62 96.17 97.63 97.09 97.84 98.03 95.87 94.59 96.07 98.08

Fa
sh

io
nM

NI
ST 32 80.98 81.87 83.16 83.60 81.35 87.06 77.75 79.43 79.82 87.49

64 84.09 84.38 85.20 85.34 83.36 87.83 80.41 82.44 83.10 88.29
128 85.92 86.13 86.76 86.51 84.47 88.44 81.21 84.18 83.98 88.66
256 86.22 87.15 87.11 87.12 85.81 89.09 78.65 85.77 85.25 87.69
400 86.62 88.05 88.34 87.47 87.13 89.44 80.09 86.20 86.21 88.81

Table 3: Comparison of the accuracy of various network architectures on the MNIST and FashionMNIST datasets.
Different sizes of the hidden layers, denoted as], are evaluated. See above for columns description.

The compression ability of the various networks is evaluated by the effect on performance that the removal of a nontrivial
amount of parameters has. We apply an `1-norm pruning scheme [49], which retains salient features and removes
unimportant ones. By specifying a percentage p ∈ [0, 100], only the p% of the parameters with the highest `1-norm are
retained. We focus on the hidden layer, where the bulk of the parameters is concentrated. Various percentages of units
are pruned and the performance of the remaining network is evaluated on the test set.

The results are presented in Table 4. With shades of red, the deterioration in terms of performance is highlighted.
All variants of the morphological network significantly outperform their linear counterpart in their ability to retain
information and the effectiveness of their constructed hidden representations. This effect becomes more evident in
the more complicated dataset FashionMNIST. For example, in the case of the SGD optimizer, the erosion and mixed
morphological networks have virtually zero decline in performance (the erosion net has actually a slight increase) even
when p = 1% but the pruning has negatively affected the performance by p = 25%, i.e. FF-ReLU requires ∼ 25 times
more parameters in the hidden layer. This difference can be explained by Fig. 5, where the hidden layer activations are
depicted for a morphological and a linear network. Lighter colors correspond to higher values. The representations
constructed by the morphological network are sparse; only a fraction of the parameters have high values. Intuitively, this
means that the removal of the rest (depicted in blue) will have minimal impact in information loss and, thus, accuracy.
However, this effect is not present in the linear net, since the weights have more uniform values.

Another insight lies in the optimizer selection. Even though models trained with Stochastic Gradient Descent have lower
accuracy scores, their ability to retain information is superior than those trained via Adaptive Momentum Estimation.
Quantitatively, the optimizer effect can be seen in Table 4 by comparing the first and last rows (p = 100% vs p = 1%).
The SGD models have no loss in accuracy, whereas the Adam models have a slight decrease. Quantitatively, this effect
can be explained by Fig. 6, where a single neuron of networks with 400 neurons in the hidden layer is depicted for each
model category. In the case of the Adam-trained morphological network, the activation is reminiscent of the the outline
of a MNIST pattern and uses a nontrivial amount of parameters. On the other hand, Fig. 6b shows notable sparsity

1[20] uses 400 epochs for training, but we only use 50 epochs.

8

arXiv

in the SGD-trained model activations. The effect holds for the linear networks but is milder given the already dense
activations.

In conclusion, the morphological networks are characterized by extreme economy in their constructed representations.
This is due to the fact that a morphological neuron, dilation or erosion, allows only one element xi of the input
x ∈ Rn to determine its output. With a small (to none) decrease in accuracy compared to their linear counterparts, the
morphological networks are able to retain their performance with a small fraction of the original parameters and display
higher compression ability.

(a) (δ, ε) (b) FF-ReLU

Figure 5: Examples of hidden layer activations for various models (MNIST dataset). (a) corresponds to a morphological
network (dilation neurons) and (b) to a feedforward network with ReLU activations (FF-ReLU). Both models have 64
neurons in the hidden layer (forming an 8× 8 grid). Each element of the grid has dimensions 28× 28 pixels, i.e. equal

to the input images of the MNIST dataset.

0 5 10 15 20 25

0

5

10

15

20

25

(a) (δ, ε) - Adam

0 5 10 15 20 25

0

5

10

15

20

25

(b) (δ, ε) - SGD

0 5 10 15 20 25

0

5

10

15

20

25

(c) FF-ReLU - Adam

0 5 10 15 20 25

0

5

10

15

20

25

(d) FF-ReLU - SGD

Figure 6: Examples of hidden layer activations for various models (MNIST dataset). (a) and (b) correspond to a
morphological network (dilation neurons), whereas (c) and (d) correspond to a feedforward network with ReLU

activations.

6 Monotonicity Constraints

In this section, we explore how architectural structure can be used to enforce shape constraints. We examine the case of
monotonicity. The output of a network is called monotone if it does not decrease with the increase of the input2 The
network into consideration was introduced by Sill [26] and is depicted in Fig. 7. Max-affine terms, i.e. dilations or
max-plus polynomials, are succeeded by a min-pooling layer, i.e. an erosion term or a min-plus polynomial. Sill names
as a group each of the K max terms, each of which comprises of Jk affine terms or hyperplanes, k = 1, 2, . . . ,K. For

2Without loss of generality, we consider only monotonically increasing functions.

9

arXiv

Adaptive Momentum Estimation Stochastic Gradient Descent

p δ ε (δ, ε) FF-ReLU δ ε (δ, ε) FF-ReLU

MN
IS

T
100% 97.62 96.17 97.95 98.13 94.86 93.36 96.07 98.16

75% 97.62 96.18 97.93 98.15 94.86 93.36 96.07 98.12
50% 97.62 96.22 97.90 98.17 94.86 93.37 96.07 98.08
25% 97.62 96.09 97.87 97.51 94.86 93.40 96.06 98.01
10% 97.62 95.78 97.74 93.38 94.86 93.38 96.09 96.67
7.5% 97.62 95.42 97.76 90.17 94.86 93.38 96.10 95.56

5% 97.62 94.51 97.66 83.39 94.86 93.40 96.10 92.96
2.5% 97.62 93.43 97.37 68.93 94.86 93.39 96.09 80.48

1% 97.62 91.17 97.08 44.22 94.86 93.38 96.08 58.07

Fa
sh

io
nM

NI
ST

100% 86.31 86.82 88.32 88.82 82.06 85.23 86.21 87.79
75% 86.30 86.81 88.30 88.88 82.00 85.23 86.21 87.75
50% 86.22 86.80 88.33 88.18 82.05 85.25 86.20 87.19
25% 85.95 86.85 88.31 82.15 81.90 85.26 86.28 84.35
10% 85.58 86.27 88.05 65.89 81.67 85.27 86.23 73.22
7.5% 85.47 86.15 87.99 57.93 81.63 85.27 86.21 63.95

5% 85.37 85.81 87.76 49.12 81.52 85.24 86.22 47.73
2.5% 84.91 85.47 87.56 42.48 81.14 85.26 86.22 38.84

1% 81.14 84.86 86.85 28.13 80.68 85.27 86.18 35.46

Table 4: Performance of pruned networks on the MNIST and FashionMNIST datasets for various model architectures.
With shades of red, we show the rapid deterioration in performance. With green, we draw attention to the absence of

loss in accuracy performance between the full (unpruned) network ant the pruned network with only 1% of the
parameters in the hidden layer.

simplicity, we consider the case where Jk = J , ∀k = 1, 2, . . . ,K. Then, for input x ∈ Rn, the output is:

y = f(x) =
∧

k∈[K]

∨

j∈[J]
{w>k,jx+ bk,j} (7)

Monotonicity constraints are enforced by limiting the weight vector w to nonnegative values via a function f with a
positive image f : Rn → Rn≥0. Various such functions have been proposed. Sill used an an exponential transformation
wi = ezi , zi ∈ R, whilst Velikova et al. [25] propose the transformation wi = z2i , which suffers no arithmetic issues
and offers the possibility of flat surfaces when z = 0. The network produces a PWL approximation of the input data.
Max-plus terms construct convex surfaces, whereas min-plus terms construct concave surfaces. Their combination in
this network structure accommodates for the more general nature of a monotonic surface, which combines both convex
and concave parts. The resulting surface can approximate any monotone function to an arbitrary degree of accuracy [26,
Theorem 3.1].

From a mathematical morphology viewpoint, the application of dilation succeeded by an erosion term results in a
closing. For strictly positive weights, the transformation is reversible and corresponds to a morphological opening
x = f−1(y) =

∨
k∈[K]

∧
j∈[J]{w−1k,j(y − bk,j)} [50]. An opening α = δε is an increasing, idempotent and anti-

extensive operator, while a closing β = εδ shares the first two properties but is extensive. Opening and closing form an
adjunction pair [11].

The morphological terms are not differentiable, which has immediate effect in training via stochastic gradient descent
variants, since the backpropagation step does not have an analytical form. Subgradient methods can be used in this case.
The backpropagation equations for the dilation and erosion terms of Sill’s monotonic network are:

∂ε

∂δk
=

{
1 argmaxh{δh} = k

0 otherwise
(8)

∂δk
∂wk,j

=

{
x argmaxh{w>k,hx} = j

0 otherwise
(9)

In other words, the morphological operators are selective in the sense that a single element xi of the input vector x is
solely responsible for the output. Thus, in the backpropagation step, only xi’s parameters are updated. The effect is

10

arXiv

x1

x2

xi

xn

...

...

max

max min y

max

+1

+1

+1

+1

+1

+1

+1

+
1

+1

+
1

Figure 7: Monotonic network. The gray edges correspond to nonnegative weights.

intensified in Sill’s network where two morphological layers are stacked. This implies that only the active hyperplane’s
weights are updated for a given pattern. Out of the K × J affine terms, only a single one gets updated. This results
in slow convergence and, potentially, poor approximations. Given low initialized weight parameters, the updated
hyperplanes have acquired higher values in order to approximate the data and, subsequently, dominate the groups, not
allowing the remaining (hyperplanes) to update their weights.

Sill proposes a variant of the gradient descent algorithm where the gradient for each hyperplane is computed by the
error of the patterns corresponding to the active hyperplane at each iteration. Another method to address this issue is the
use of a gain parameter G which magnifies the initialized weights. This way, the weights of the dominating hyperplane
get diminished during the backpropagation step allowing the other hyperplanes to dominate in the next epochs. We
propose a method to circumvent this issue completely, which lies in the softening of morphological operators max and
min via Maslov Dequantization, alleviating the undifferentiability of their hard counterparts.

We illustrate this method via a simple example. We consider the (strictly) increasing function f(x) = x3+x+sinx, x ∈
[−4, 4] and scale both domain and image to [−1, 1]. Glorot uniform initialization [51] is used for all network weights.
100 observations are sampled uniformly and corrupted with additive i.i.d zero-mean Gaussian noise ε ∼ N (0, σ2).
The training lasts 1000 epochs using Adaptive Momentum Estimation with learning rate η = 0.01. For comparison
purposes, we use isotonic regression [52], a method based on quadratic programming that yields monotone piecewise
constant surfaces and has the following formulation in R:

min
∑

i

wi(yi − ŷi)2

s.t. ŷi < ŷj xi < xj

For the monotonic net, we select gain parameter G = 20 for initializing the weights. For the smooth monotonic net,
we select hardness parameter β = 5. The results are presented in Table 5 for K = J = 5 for various noise levels.
Particularly, for σ = 0.15 the surfaces that each method produces are depicted in Fig. 8. From Table 5, we conclude
that the smooth monotonic net outperforms the other methods for all noise levels σ. Furthermore, its training procedure
needs not the selection of an arbitrary gain parameter G and is overall simpler and more intuitive.

σ 0.05 0.1 0.15 0.2

Linear Reg. 0.0236 0.03077 0.04827 0.0505
Isotonic Reg. 0.0042 0.01112 0.02557 0.0417

Sill Net 0.00305 0.01107 0.02401 0.0390
Smooth Sill Net 0.00294 0.00938 0.02302 0.0386

Table 5: RMS error of monotonic regression methods with noise ε ∼ N (0, σ2)

11

arXiv

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Input Data

−1.0

−0.5

0.0

0.5

1.0

T
ar

ge
t

D
at

a

Ground Truth

Monotonic Net

Smooth Monotonic

Linear Regression

Isotonic Regression

Figure 8: Comparison of monotonic regression methods

7 CONCLUSION

In this paper, we have proposed extensions of morphological neurons regarding their training, enforcing shape constraints
such as monotonicity via architectural choices and studied their compression ability. We extended the binary classifier
Dilation-Erosion Perceptron to general classification tasks using the one-versus-one approach and employed a Bagging
method with Radial Basis Functions kernels to alleviate the partial ordering of lattice-based models and developed robust
classifiers with accuracies comparable to more general morphological networks. We studied the accuracy of dense
morphological networks under heavy pruning and compared their ability to construct efficient hidden representations to
their linear counterparts, drawing favorable conclusions for the morphological models. Finally, we proposed the use of
smooth operators in a monotonic network which improves not only performance but convergence in training as well.

References

[1] Ritter, G. X. and Sussner, P. “An introduction to morphological neural networks”. In: Proceedings of 13th
International Conference on Pattern Recognition. Vol. 4. IEEE. 1996, pp. 709–717.

[2] Ritter, G. X., Sussner, P., and Diza-de-Leon, J. “Morphological associative memories”. In: IEEE Transactions on
neural networks 9.2 (1998), pp. 281–293.

[3] Sussner, P. “Morphological perceptron learning”. In: Proceedings of the 1998 IEEE International Symposium
on Intelligent Control (ISIC) held jointly with IEEE International Symposium on Computational Intelligence in
Robotics and Automation (CIRA) Intell. IEEE. 1998, pp. 477–482.

[4] Pessoa, L. F. and Maragos, P. “Neural networks with hybrid morphological/rank/linear nodes: a unifying
framework with applications to handwritten character recognition”. In: Pattern Recognition 33.6 (2000), pp. 945–
960.

[5] Yang, P.-F. and Maragos, P. “Min-max classifiers: Learnability, design and application”. In: Pattern Recognition
28.6 (1995), pp. 879–899.

[6] Charisopoulos, V. and Maragos, P. “Morphological Perceptrons: Geometry and Training Algorithms”. In:
Mathematical Morphology and Its Applications to Signal and Image Processing. Cham: Springer International
Publishing, 2017. ISBN: 978-3-319-57240-6.

[7] Charisopoulos, V. and Maragos, P. “A Tropical Approach to Neural Networks with Piecewise Linear Activations”.
In: arXiv (May 2018). URL: http://arxiv.org/abs/1805.08749.

[8] Zhang, Y. et al. “Max-plus Operators Applied to Filter Selection and Model Pruning in Neural Networks”. In:
International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing.
Springer. 2019, pp. 310–322.

[9] Smyrnis, G. and Maragos, P. “Multiclass Neural Network Minimization via Tropical Newton Polytope Approx-
imation”. In: Proceedings of the 37th International Conference on Machine Learning (ICML). PMLR, July
2020.

12

http://arxiv.org/abs/1805.08749

arXiv

[10] Davidson, J. L. and Hummer, F. “Morphology neural networks: An introduction with applications”. In: Circuits,
Systems and Signal Processing 12.2 (1993), pp. 177–210.

[11] Maragos, P. “Dynamical systems on weighted lattices: general theory”. In: Mathematics of Control, Signals, and
Systems 29.4 (Dec. 2017). ISSN: 0932-4194, 1435-568X. DOI: 10.1007/s00498-017-0207-8.

[12] Barmpoutis, A. and Ritter, G. X. “Orthonormal basis lattice neural networks”. In: Computational Intelligence
Based on Lattice Theory. Springer, 2007, pp. 45–58.

[13] Ritter, G. X. and Urcid, G. “Lattice algebra approach to single-neuron computation”. In: IEEE Transactions on
Neural Networks 14.2 (2003), pp. 282–295.

[14] Sussner, P. and Esmi, E. L. “Morphological perceptrons with competitive learning: Lattice-theoretical framework
and constructive learning algorithm”. In: Information Sciences 181.10 (2011), pp. 1929–1950.

[15] Zhang, L., Naitzat, G., and Lim, L.-H. “Tropical Geometry of Deep Neural Networks”. In: Proc. ICML. 2018.
[16] Calafiore, G. C., Gaubert, S., and Possieri, C. “Log-sum-exp neural networks and posynomial models for convex

and log-log-convex data”. In: arXiv:1806.07850 [cs] (2018).
[17] Calafiore, G. C. et al. “A Universal Approximation Result for Difference of log-sum-exp Neural Networks”. In:

arXiv:1905.08503 [cs] (2019).
[18] Tsiamis, A. and Maragos, P. “Sparsity in max-plus algebra and systems”. In: Discrete Event Dynamic Systems

(May 2019). ISSN: 0924-6703, 1573-7594. DOI: 10.1007/s10626-019-00281-1.
[19] Smyrnis, G., Maragos, P., and Retsinas, G. “Maxpolynomial Division with Application To Neural Network Sim-

plification”. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE. 2020, pp. 4192–4196.

[20] Mondal, R., Santra, S., and Chanda, B. “Dense Morphological Network: An Universal Function Approximator”.
In: arXiv (2019). URL: http://arxiv.org/abs/1901.00109.

[21] Franchi, G., Fehri, A., and Yao, A. “Deep morphological networks”. In: Pattern Recognition 102 (2020),
p. 107246.

[22] Mellouli, D. et al. “Morphological convolutional neural network architecture for digit recognition”. In: IEEE
transactions on neural networks and learning systems 30.9 (2019), pp. 2876–2885.

[23] Archer, N. P. and Wang, S. “Application of the Back Propagation Neural Network Algorithm with Monotonicity
Constraints for Two-Group Classification Problems*”. In: Decision Sciences 24.1 (1993), pp. 60–75. ISSN:
1540-5915. DOI: 10.1111/j.1540-5915.1993.tb00462.x.

[24] Kay, H. and Ungar, L. H. “Estimating monotonic functions and their bounds”. In: AIChE Journal 46.12 (2000),
pp. 2426–2434.

[25] Velikova, M., Daniels, H., and Feelders, A. “Solving Partially Monotone Problems with Neural Networks”. In:
12 (2006), p. 6.

[26] Sill, J. “Monotonic networks”. In: Advances in neural information processing systems. 1998.
[27] Daniels, H. and Velikova, M. “Monotone and Partially Monotone Neural Networks”. In: IEEE Transactions on

Neural Networks 21.6 (2010), pp. 906–917. ISSN: 1941-0093. DOI: 10.1109/TNN.2010.2044803.
[28] Gupta, M. et al. “Monotonic calibrated interpolated look-up tables”. In: The Journal of Machine Learning

Research 17.1 (2016), pp. 3790–3836.
[29] Gupta, M. et al. “Diminishing Returns Shape Constraints for Interpretability and Regularization”. In: Advances in

Neural Information Processing Systems 31. Ed. by S. Bengio et al. Curran Associates, Inc., 2018, pp. 6834–6844.
[30] Milani Fard, M. et al. “Fast and Flexible Monotonic Functions with Ensembles of Lattices”. In: Advances in

Neural Information Processing Systems 29. Ed. by D. D. Lee et al. Curran Associates, Inc., 2016, pp. 2919–2927.
[31] You, S. et al. “Deep Lattice Networks and Partial Monotonic Functions”. In: arXiv:1709.06680 [cs, stat] (2017).
[32] Wehenkel, A. and Louppe, G. “Unconstrained Monotonic Neural Networks”. In: Advances in Neural Information

Processing Systems 32. Ed. by H. Wallach et al. Curran Associates, Inc., 2019, pp. 1545–1555.
[33] Wang, S. and Sun, X. “Generalization of hinging hyperplanes”. In: IEEE Transactions on Information Theory

51.12 (2005), pp. 4425–4431. ISSN: 1557-9654. DOI: 10.1109/TIT.2005.859246.
[34] Tarela, J., Alonso, E., and Martinez, M. “A representation method for PWL functions oriented to parallel

processing”. In: Mathematical and Computer Modelling 13.10 (1990), pp. 75–83.
[35] Tarela, J. and Martinez, M. “Region configurations for realizability of lattice piecewise-linear models”. In:

Mathematical and Computer Modelling 30.11-12 (1999), pp. 17–27.
[36] Litvinov, G. L. “Maslov dequantization, idempotent and tropical mathematics: A brief introduction”. In: J. Math.

Sciences 140.3 (2007). ISSN: 1072-3374, 1573-8795.
[37] Ruder, S. “An overview of gradient descent optimization algorithms”. In: arXiv (2017). URL: http://arxiv.

org/abs/1609.04747.

13

https://doi.org/10.1007/s00498-017-0207-8
https://doi.org/10.1007/s10626-019-00281-1
http://arxiv.org/abs/1901.00109
https://doi.org/10.1111/j.1540-5915.1993.tb00462.x
https://doi.org/10.1109/TNN.2010.2044803
https://doi.org/10.1109/TIT.2005.859246
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747

arXiv

[38] Boyd, S. P. and Vandenberghe, L. Convex optimization. Cambridge University Press, 2004. ISBN: 978-0-521-
83378-3.

[39] Goodfellow, I. et al. “Maxout Networks”. In: vol. 28. PMLR, 2013, pp. 1319–1327. URL: http://proceedings.
mlr.press/v28/goodfellow13.html.

[40] Hartman, P. “On functions representable as a difference of convex functions”. In: Pacific Journal of Mathematics
9.3 (Sept. 1959), pp. 707–713. ISSN: 0030-8730, 0030-8730. DOI: 10.2140/pjm.1959.9.707.

[41] Yuille, A. L. and Rangarajan, A. “The Concave-Convex Procedure”. In: Neural Computation 15.4 (Apr. 2003),
pp. 915–936. ISSN: 0899-7667, 1530-888X. DOI: 10.1162/08997660360581958.

[42] Lipp, T. and Boyd, S. “Variations and extension of the convex–concave procedure”. In: Optimization and
Engineering 17.2 (June 2016), pp. 263–287. ISSN: 1389-4420, 1573-2924. DOI: 10.1007/s11081-015-9294-
x.

[43] Shen, X. et al. “Disciplined convex-concave programming”. In: 2016 IEEE 55th Conference on Decision
and Control (CDC). IEEE, Dec. 2016. ISBN: 978-1-5090-1837-6. URL: http://ieeexplore.ieee.org/
document/7798400/.

[44] Diamond, S. and Boyd, S. “CVXPY: A Python-embedded modeling language for convex optimization”. In:
Journal of Machine Learning Research 17.83 (2016), pp. 1–5.

[45] Valle, M. E. “Reduced Dilation-Erosion Perceptron for Binary Classification”. In: Mathematics 8.4 (2020),
p. 512. ISSN: 2227-7390. DOI: 10.3390/math8040512.

[46] LeCun, Y. “The MNIST database of handwritten digits”. In: http://yann. lecun. com/exdb/mnist/ (1998).
[47] Xiao, H., Rasul, K., and Vollgraf, R. “Fashion-mnist: a novel image dataset for benchmarking machine learning

algorithms”. In: arXiv (Aug. 2017).
[48] Kingma, D. P. and Ba, J. “Adam: A Method for Stochastic Optimization”. In: arXiv:1412.6980 [cs] (2017).
[49] Li, H. et al. “Pruning filters for efficient convnets”. In: arXiv (2016).
[50] Duetting, P. et al. “Optimal Auctions through Deep Learning”. In: ICML. 2019. URL: http://proceedings.

mlr.press/v97/duetting19a.html.
[51] Glorot, X. and Bengio, Y. “Understanding the difficulty of training deep feedforward neural networks”. In:

Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010, pp. 249–256.
[52] Barlow, R. E. and Brunk, H. D. “The isotonic regression problem and its dual”. In: J. Amer. Stat. Assoc. 337

(1972).

14

http://proceedings.mlr.press/v28/goodfellow13.html
http://proceedings.mlr.press/v28/goodfellow13.html
https://doi.org/10.2140/pjm.1959.9.707
https://doi.org/10.1162/08997660360581958
https://doi.org/10.1007/s11081-015-9294-x
https://doi.org/10.1007/s11081-015-9294-x
http://ieeexplore.ieee.org/document/7798400/
http://ieeexplore.ieee.org/document/7798400/
https://doi.org/10.3390/math8040512
http://proceedings.mlr.press/v97/duetting19a.html
http://proceedings.mlr.press/v97/duetting19a.html

arXiv

A Appendix

Proof. We will prove that δβ(x) = 1
β log

(∑
k

eβxk

)
→ maxk{xk} = δ(x) as β →∞.

lim
β→∞

δβ(x) = lim
β→∞

1

β
log

(∑

k

eβyk

)

= lim
β→∞

log

(∑
k

eβyk
)

β
. DLH

= lim
β→∞

∑
k

yke
βyk

∑
k

eβyk

= lim
β→∞

∑

j

yje
βyj

∑
k

eβyk

= lim
β→∞

∑

j

yj
1 +

∑
k 6=j

eβ(yk−yj)
. divide by eβyj

=
∑

j

lim
β→∞

yj
1 +

∑
k 6=j

eβ(yk−yj)

︸ ︷︷ ︸
Aj

(10)

where with "DLH" we note the use of the De L′Hôpital rule. Let K be the number of elements that are equal to the
maximum term. Then, we have the following cases for the term Aj :

• j 6= j∗ = argmaxk yk. Then, there exist three sets I>, I<, I= such that I> = {i : yi > yj}, I< = {i : yi <
yj} and I= = {i : yi = yj}. But I> 6= ∅. Hence,

Aj = lim
β→∞

yj
1 +

∑
k 6=j

eβ(yk−yj)

= lim
β→∞

yj
1 +

∑
k∈I<

eβ(yk−yj) +
∑
k∈I=

eβ(yk−yj) +
∑
k∈I>

eβ(yk−yj)

=
yj

1 +
∑
k∈I<

e−∞ +
∑
k∈I>

e0 +
∑
k∈I>

e∞
= 0

• j = j∗ = argmaxk yk. Then, I> = ∅, |I=| = K − 1 from our hypothesis and each term yk − yj of the
exponential at the denominator is negative for all k ∈ I<. Thus:

Aj = lim
β→∞

yj
1 +

∑
k 6=j

eβ(yk−yj)

=
yj

1 +
∑
k∈I=

e0 +
∑
k∈I<

e−∞

=
yj

1 + (K − 1) + 0

=
yj
K

=
ymax

K

Subsequently, the quantity Aj is zero for every yj that is not equal to the maximum ymax and is equal to ymax

K for each
of the K terms that are equal to the maximum. Thus, using 10 concludes the proof.

15

	1 Introduction
	2 Related Work
	3 BACKGROUND CONCEPTS
	4 Convex-Concave Procedure Training for General Classification Tasks
	4.1 Binary Classification Problem formulation
	4.2 Extension to multiclass problems

	5 Pruning Morphological Neural Nets
	6 Monotonicity Constraints
	7 CONCLUSION
	A Appendix

