
Pareto Manifold Learning:
Tackling multiple tasks via ensembles of single-task models

Nikolaos Dimitriadis, Pascal Frossard, François Fleuret

International Conference on Machine Learning

Honolulu - July 23-29, 2023

�

https://github.com/nik-dim/pamal
https://arxiv.org/abs/2210.09759


Problem formulation



Problem formulation



Problem formulation



Problem formulation



ERM objective = E(x ,y)∼D [L (y , f (x ;θ))] → E(x ,y)∼D

[
w⊤L (y , f (x ;θ))

]

BA C
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objective = E(x ,y)∼D

[
Eα∼P

[
α⊤L (y , f (x ;αΘ))

]]

= E(x ,y)∼D

[
Eα∼P

[
T∑

t=1

αtLt

(
y , f

(
x ;

T∑

t=1

αtθt

))]]
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Algorithm Improvements
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We penalize the violations of the monotonicity constraints for the appropriate task loss.

• Loss and Gradient Balancing Schemes

• Sampling Distribution
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Experiments
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Experiments on MultiMNIST and Census. Top right is optimal. Three seeds per method.
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Test performance on CityScapes. 3 random seeds per method.

Segmentation Depth

mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓

STL 70.96 92.12 0.0141 38.644

LS 70.12 91.90 0.0192 124.061

UW 70.20 91.93 0.0189 125.943

MGDA 66.45 90.79 0.0141 53.138

DWA 70.10 91.89 0.0192 127.659

PCGrad 70.02 91.84 0.0188 126.255

IMTL 70.77 92.12 0.0151 74.230

Graddrop 70.07 91.93 0.0189 127.146

CAGrad 69.23 91.61 0.0168 110.139

RLW 68.79 91.52 0.0213 126.942

Nash-MTL 71.13 92.23 0.0157 78.499

RotoGrad 69.92 91.85 0.0193 127.281

Auto-λ 70.47 92.01 0.0177 116.959

COSMOS 69.78 91.79 0.0539 136.614

PaMaL(ours) 70.35 91.99 0.0141 54.520
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