Pareto Manifold Learning: Tackling multiple tasks via ensembles of single-task models Nikolaos Dimitriadis, Pascal Frossard, Francois Fleuret

Contributions

- Geometrical view: the Pareto Front admits a linear parameterization in parameter space.
- We propose Pareto Manifold Learning, a novel weight-ensembling approach that produces a continuous Pareto Front in a single training run, allowing to modulate the performance on each task during inference.
- Extended experimental validation: PaMaL outperforms state-of-the-art single-point algorithms, while learning a better Pareto parameterization than multi-point baselines.

Problem Formulation

<u>Problem</u>: vector optimization problem $\min \mathbb{E}_{(x,y)\sim \mathcal{D}}[L(f(x; \theta), y)]$ a continuous parameterization of the Pareto Front Goal: We can select the model satisfying our desired trade-off

Algorithm

- Weight ensemble of single-task predictors. At each step, we perform the forward pass with a randomly selected model lying in the convex hull of ensemble members.
- PaMaL objective generalizes Linear Scalarization [Kur+22,Xin+22]

Proposed regularization penalizes violations of monotonicity constraints promoting functional diversity.

We linearly parameterize a Pareto Front in Multi-Task Learning and train it in a single run.

Weight space W

Objective space ()

	Segmentation		Depth	
	mIoU ↑	Pix Acc \uparrow	Abs Err \downarrow	Rel Err \downarrow
STL	70.96	92.12	0.0141	38.644
LS	70.12	91.90	0.0192	124.061
UW	70.20	91.93	0.0189	125.943
MGDA	66.45	90.79	0.0141	53.138
DWA	70.10	91.89	0.0192	127.659
PCGrad	70.02	91.84	0.0188	126.255
IMTL	70.77	92.12	0.0151	74.230
Graddrop	70.07	91.93	0.0189	127.146
CAGrad	69.23	91.61	0.0168	110.139
RLW	68.79	91.52	0.0213	126.942
Nash-MTL	71.13	92.23	0.0157	78.499
RotoGrad	69.92	91.85	0.0193	127.281
Auto- λ	70.47	92.01	0.0177	116.959
COSMOS	69.78	91.79	0.0539	136.614
PaMaL(ours)	70.35	91.99	0.0141	54.520

Cor+16] M. Cordts et al. "The Cityscapes Dataset for Semantic Urban Scene Understanding". In: IEEE Conference on Computer Vision and Pattern Recognition. 2016. Kur+22] V. Kurin et al. "In defense of the unitary scalarization for deep multi-task learning". In: Advances in Neural Information Processing Systems. 2022. [Xin+22] D. Xin et al. "Do Current Multi-Task Optimization Methods in Deep Learning Even Help?" In: Advances in Neural Information

Experiments

PaMaL produces a reliable mapping from preference to objective space and outperforms SOTA single-point algorithms.

The work of Nikolaos Dimitriadis wa oported by Swisscom (Switzerland) AG