
SequeL: A Continual Learning Library in PyTorch and JAX

Nikolaos Dimitriadis
EPFL

nikolaos.dimitriadis@epfl.ch

François Fleuret
University of Geneva

francois.fleuret@unige.ch

Pascal Frossard
EPFL

pascal.frossard@epfl.ch

Abstract

Continual Learning is an important and challenging
problem in machine learning, where models must adapt to
a continuous stream of new data without forgetting pre-
viously acquired knowledge. While existing frameworks
are built on PyTorch, the rising popularity of JAX might
lead to divergent codebases, ultimately hindering repro-
ducibility and progress. To address this problem, we intro-
duce SequeL, a flexible and extensible library for Continual
Learning that supports both PyTorch and JAX frameworks.
SequeL provides a unified interface for a wide range of
Continual Learning algorithms, including regularization-
based approaches, replay-based approaches, and hybrid
approaches. The library is designed towards modularity
and simplicity, making the API suitable for both researchers
and practitioners. We release SequeL1 as an open-source
library, enabling researchers and developers to easily ex-
periment and extend the library for their own purposes.

1. Introduction

The field of Continual Learning (CL), also known as
Lifelong Learning [31], Incremental Learning [33], or Se-
quential Learning, has seen fast growth in recent years.
Continual Learning addresses the important setting of incre-
mentally learning from a stream of data sources, disposing
of the long-standing i.i.d. assumption of traditional machine
learning. However, the pace of innovation has led to diverg-
ing settings in terms of datasets, assumptions, and require-
ments. As a consequence, several works have attempted to
unify the Continual Learning paradigms [3, 24].

The plethora of Continual Learning settings is accompa-
nied by a variety of Deep Learning libraries, such as Py-
Torch, JAX, and TensorFlow, leading to further division.
Each Deep Learning library has different advantages, and
researchers opt for the one that better suits their needs and
prior experience. Over time, the influx of new methods re-
sults in disconnected repositories, stagnating progress due

1https://github.com/nik-dim/sequel

to limited reusability and lack of reproducibility.
In this work, we propose SequeL, i.e., Sequential

Learning, a Continual Learning framework written in both
PyTorch and JAX. SequeL aims to unite the divergent code-
bases while allowing researchers to prototype fast without
delving into engineering code, e.g., training loops and met-
ric tracking. Users can develop in the framework of their
choosing while accessing the already implemented base-
lines. For example, consider the case where one researcher
wants to implement a novel algorithm in JAX, but all the
baselines are in PyTorch. Reimplementing everything from
scratch is time-consuming and prone to mistakes. Instead,
they can use our proposed framework to integrate their
method and compare with baselines in an equal footing.

Overall, SequeL offers a unified and flexible framework
for Continual Learning research, which is easily extensible

import sequel
import optax
PyTorch -> from torch.optim import optim

benchmark = sequel.benchmarks.SplitMNIST(
num_tasks=5, batch_size=10)

model = sequel.backbones. jax .MLP(

widths=[200], num_classes=10)
optimizer = optax.sgd(learning_rate=0.1)
for PyTorch -> optimizer = optim.SGD(lr=0.1)

algo = sequel.algorithms. jax .EWC(

model, benchmark, optimizer,
callbacks=[

sequel.callbacks. Jax MetricCallback(),
TqdmCallback()],

loggers=[
WandbLogger(...), CometLogger(...)],

additional arguments specific to EWC
ewc_lambda=1,
optional arguments for all algorithms
lr_decay=0.8)

algo.fit(epochs_per_task=1)

Code 1. Example of an experiment in SequeL. By changing the
highlighted jax to pytorch, and modifying the optimizer defi-
nition, the user can opt to run the experiment in either framework.

ar
X

iv
:2

30
4.

10
85

7v
1

 [
cs

.L
G

]
 2

1
A

pr
 2

02
3

https://github.com/nik-dim/sequel

and accessible in order to foster reproducibility. We believe
SequeL can help researchers to better compare methods and
scale up to more complex Continual Learning settings.

2. Framework

The framework contains the following modules: Bench-
marks (Section 2.1), Backbones (Section 2.2), Callbacks
(Section 2.3), Loggers (Section 2.4), and Algorithms (Sec-
tion 2.5). Code 1 shows the interplay between the different
modules; a benchmark and a backbone along with loggers
are fed into the algorithm instance that is endowed with ad-
ditional custom functionalities via callbacks. The algorithm
serves as a trainer module and also houses the conceptual
details of CL methodologies, such as Averaged-Gradient
Episodic Memory [8]. SequeL provides flexibility by al-
lowing users to develop their algorithm in either JAX or Py-
Torch. The framework has been geared towards ease-of-use
and division of engineering and algorithmic details.

2.1. Benchmarks

The Benchmarks module provides several widely-used
Continual Learning benchmarks, both in the New In-
stance (NI) and New Class (NC) scenarios. The currently
supported benchmarks are Split/Permuted/Rotated MNIST,
Split CIFAR10/100 and Split TinyImageNet. The Bench-
marks module is implemented in PyTorch, since it is bet-
ter suited for dynamically generating and handling data
streams. During training, the input and targets are trans-
formed to the appropriate format to ensure compatibility
with both PyTorch and JAX. All supported benchmarks are
based on BaseBenchmark class that handles most use
cases such as loading training and validation streams for
task t, for all tasks up to t, i.e., {1, 2, . . . , t}. Similar func-
tionalities are provided for memory capabilities, such as
loading memory streams for one or more tasks, augment-
ing the current task dataset with the memories of all pre-
vious tasks etc. The benchmark module also handles dat-
aloader construction, and the input to the algorithm is a tu-
ple (x, y, t) of inputs x, targets y and task IDs t.

Implementing new benchmarks Let T be the number
of tasks. Each Benchmark must implement the method
prepare datasets that returns two dictionaries of T
key-value pairs that contain the dataset for the correspond-
ing task t ∈ [T], for training and validation. For New Class
scenarios, such as SplitMNIST or SplitCIFAR100, the
method creates a disjoint datasets and for New Instance sce-
narios, such as PermutedMNIST or RotatedMNIST, each
dataset is coupled with a specific torchvision transfor-
mation, regarding the fixed permutation or rotation.

2.2. Models/Backbones

The Models module contains neural networks widely
used in the literature, such as MultiLayer Perceptrons
and Convolutional Neural Networks, Residual Networks
[18]. For both JAX and PyTorch, a BaseBackbone
class is defined that inherits from flax.nn.Module and
torch.nn.Module, respectively and endows the model
with the functionality of selecting the output head for NC
benchmarks. The user can easily extend the module with
models stemming from the literature or that are custom-
made by changing the base class to BaseBackbone.
A utility model is also provided that receives as input a
torch/flax.nn.Module and wraps it with the appro-
priate BaseBackbone to facilitate importability.

2.3. Callbacks

A callback provides hooks for any point in training and
validation, similar to Pytorch Lightning [15]. It offers the
ability to extend or probe the algorithm and/or model during
fitting. Metric callbacks have been implemented for both
JAX and PyTorch and handle the monitoring of metrics,
e.g., accuracy and forgetting, and the ad hoc tracking via
the Loggers module. Utility callbacks can be implemented,
such as the TqdmCallback that provides additional infor-
mation during training via a progress bar.

2.4. Loggers

Experiment tracking has become an indispensable part
of the ML pipeline. Hence, SequeL includes five dif-
ferent loggers: LocalLogger, ConsoleLogger,
WandbLogger2, TensorBoardLogger and
CometLogger, allowing users to track their runs
with the preferred service. Specifically, LocalLogger
saves the evolution and final metrics in a local file, while
ConsoleLogger prints information as a table in the
console. WandbLogger, TensorBoardLogger and
CometLogger use the APIs of the homonym services,
allowing the tracking of images, tables etc. and the integra-
tion with powerful visualization tools and dashboards.

2.5. Algorithms

The Algorithms module controls the program flow and
incorporates all the aforementioned modules. By calling
the fit method, training with validation occurs for the se-
lected backbone for the given benchmark, tracking metrics
via the corresponding callback and logging them to the de-
sired service via a logger. The parent class BaseAlgorithm
handles the engineering code, while the algorithmic parts
are implemented by the children classes. This design choice
is motivated by the desire to have access to all internal vari-
ables, such as the input x and task ID t of the current batch,

2Wandb refers to Weights & Biases [4]

start
training
task

start
training
epoch

start
training
step

end
training
step

end
training
epoch

end
training
task

start
validation
prev tasks

start
validation

task t

start
validation

step

end
validation

step

end
validation

task t

end
validation
prev tasks

zero-grad
optimizer

perform
forward

compute
loss

loss
backprop.

gradient
clipping

optimizer
step

Figure 1. Control flow of the fitting process. Every point is surrounded by callback hooks. For instance,
training step() is preceded by on before training step() and on before training step callbacks() and pro-
ceeded by on after training step() and on after training step callbacks().

without using a separate training module. As a result, the
engineering logic is kept separate from research code via
inheritance. Figure 1 shows a simplified version of the pro-
gram flow. Each event is encircled by the homonym call-
backs.

The BaseAlgorithm class is framework agnostic and
primarily sets the control flow of the program, such as train-
ing for one task and then validating current and preceding
tasks. The peculiarities and design constraints imposed by
the PyTorch and JAX philosophy are handled by the cor-
responding base classes, PyTorchBaseAlgorithm and
JaxBaseAlgorithm. For instance, for PyTorch the cur-
rent batch is moved to the appropriate CUDA device, while
for JAX it is converted to the NumPy format.

The BaseAlgorithm offers basic functionality and
uses callbacks for specific and custom functionalities.
It also inherits from BaseCallback and provides
the same hooks outlined in Section 2.3. Overall,
each event E in training, e.g., training epoch()
is surrounded by four hooks in the following se-
quence: on before E, on before E callbacks, E,
on after E and on after E callbacks. Hence, the
user can choose to implement an algorithm via specific call-
backs or in child classes so that the research code is con-
centrated in a single file. For improved readability, the cur-
rently supported methods opt for the latter. Calculation of
metrics, utilities for printing to console etc. are reserved for
callbacks and the corresponding hooks.

The framework includes implementations for Naive
Finetuning, Elastic Weight Consolidation (EWC) [22],
Synaptic Intelligence (SI) [38], Memory Aware Synapses
(MAS) [3], Averaged-Gradient Episodic Memory (A-
GEM) [8], Less-Forgetting Learning (LFL) [21], Experi-
ence Replay (ER) [9], Dark Experience Replay (DER and
DER++) [7], Stable SGD [27], Kernel Continual Learning
(KCL) [11], Look Ahead Model Agnostic Meta Learning
(LaMAML) [17], and Mode Connectivity Stochastic Gradi-
ent Descent (MC-SGD) [26].

Implementing new algorithms SequeL supports regu-

larization and replay algorithms, via out-of-the-box com-
ponents. Parent classes are implemented for the spe-
cific realizations of regularization-based algorithms such
as Elastic Weight Consolidation. For replay methods, the
MemoryMechanism class and the corresponding callback
handle saving samples in the memory and their selection
process. For regularization algorithms, the overall loss for
sample (x, y, t) of a classification problem is L(x, y) =
LCE(fθ(x), y) + λ

∑
i Ωi(θi − θi,old)2 where f is a neural

network parameterized by θ, θold are the parameters at the
end of training of the previous task, Ωi refers to the impor-
tance of parameter i and λ is the regularization coefficient.
To add a new regularization method, the user needs only to
implement the calculate parameter importance
method to calculate Ωi, while the storing of the old param-
eters and the calculation of the regularization loss is han-
dled by the parent class. In case of algorithms such as
Synaptic Intelligence [38] that keep an online internal pa-
rameter ωi that is later used to compute Ωi, the method
on after training step houses the corresponding
algorithmic details.

Reproducibility To encourage transparency, SequeL uses
Hydra [37] configuration files to formalize experiments.
While an experiment can be constructed as in Code 1, an
alternative lies in defining a configuration file, as in Code 2.
Instead of obfuscating hyperparameters and impeding re-
producible results, an experiment defined with Hydra can
be easily shared and reported. This feature is enabled by a
series of routers that select the correct benchmark or model,
and the implementation of the from config method for
all related module classes. SequeL includes such config-
uration files reproducing Continual Learning baselines re-
ported in various papers. Example configuration files along
with reproducibility runs tracked via Weights&Biases are
provided; the experiments focus on RotatedMNIST and
include classic algorithms, such as EWC [22] and Naive
SGD, as well as more involved baselines in MCSGD [26]
and LaMAML [17]. The list will be expanded to ensure
correctness. See Appendix A for more details.

Hyperparameter Tuning Another benefit of the Hydra-
based [37] setup is its out-of-the-box hyperparameter tuning
capabilities, allowing for the quick setup of ablation studies.
Specifically, the user picks as a basis the aforementioned
config file and defines the settings of a grid search, such as
batch size ∈ {10, 20, 30} and lr ∈ {0.01, 0.1}.

3. Related Work

The progress of the Machine Learning community can
be attributed to large extent to the development of Deep
Learning libraries, such as PyTorch [32], TensorFlow [2]
and JAX [5], which abstract low-level engineering code and
provide a high-level API to the user. Thus, researchers and
practitioners can reliably develop new methodologies by fo-
cusing on the algorithmic inner workings.

The progress of the field in conjunction with the fact
that majority of the ML pipelines are similar has pushed
for the creation of frameworks that provide further abstrac-
tions. Pytorch Lightning [15] and fastai [19] are general ML
libraries that extend flexibility via a wide range of callbacks
and loggers, while minimizing the engineering overhead.

The progressive increase in abstraction has led to the de-
velopment of libraries specialized towards specific ML sub-
fields and that use the aforementioned software as build-
ing blocks. For instance, the HuggingFace [36] library for
Transformers [34] includes pretrained models for Natural
Language Processing and, more recently, Computer Vision

version: 0.0.1 # of SequeL framework
mode: pytorch # or jax
algo:

name: ewc
ewc_lambda: 1.0

benchmark:
name: rotatedmnist
batch_size: 10
num_tasks: 20
per_task_rotation: 9

backbone:
type: mlp
n_hidden_layers: 2
width: 256
num_classes: 10
dropout: 0.2

optimizer:
type: sgd
lr: 0.01
lr_decay: 0.8

training:
epochs_per_task: 1

wandb: # enables Weights and Biases tracking
entity: ENTITY
project: PROJECT

Code 2. Example of a configuration file. Experiments in SequeL
can be fully expressed and started easily by defining the settings
in a yaml file. The configuration file includes the version of the
framework as well, in this case 0.0.1.

[13]. PyTorch Geometric [16] offers a comprehensive suite
of tools geared towards Graph Neural Networks (GNNs).
Deep Graph Library [35] also focuses on deep learning for
graphs and is also framework agnostic, i.e., it supports Py-
Torch, Apache MXNet and TensorFlow. SequeL shares
this trait and offers the user the flexibility of two ecosys-
tems in PyTorch and JAX. Multiple packages exist in the
Reinforcement Learning literature, e.g., OpenAI Gym [6]
and OpenAI baselines [12]. MMSegmentation [29] and
Segmentation-Models-PyTorch [20] are semantic segmen-
tation toolboxes. SequeL’s Hydra integration shares the de-
sign philosophy of the configuration files used in the former.

An important aspect of the ML toolbox focuses on ex-
periment tracking and monitoring and is becoming more
important given the increasing complexity of models and
methods, the need of rigorous ablation studies and hyperpa-
rameter tunings. Several frameworks address these impera-
tives, such as MLFlow [10], Weights and Biases [4], Comet
and TensorBoard [2]. SequeL incorporates the logging ca-
pabilities of such libraries and allows users to track and vi-
sualize their experiments with the service of their choosing.

The overarching effort to create easy-to-use and reli-
able tools has also been observed in the Continual Learn-
ing realm. Several libraries have been proposed, such as
Avalanche [23], CL-Gym [28] and Sequoia [30]. Avalanche
and CL-Gym share a similar design in terms of module
structure and focus on the supervised setting. The algo-
rithm selection in CL-Gym is limited and, while Avalanche
offers a wide range of algorithms, the focus lies on more
classical algorithms. For instance, Kernel Continual Learn-
ing [11] and Dark Experience Replay [7] are not imple-
mented in either framework. AvalancheRL [25] extends
Avalanche with functionalities for Reinforcement Learn-
ing. Sequoia [30] focuses on the Reinforcement Learn-
ing perspective of Continual Learning and uses components
of OpenAI Gym [6], Avalanche [1] and Continuum [14].
Compared to the aforementioned libraries, SequeL supports
both PyTorch and JAX, simplifying the comparison and im-
portability of novel methods and implementations of exist-
ing approaches irrespective of framework.

4. Conclusion

In conclusion, we have presented SequeL, a novel Con-
tinual Learning framework written in both PyTorch and
JAX, aimed at unifying divergent codebases and facilitat-
ing reproducible research in the field of Continual Learn-
ing. Our library provides a convenient and flexible platform
for researchers to prototype and test their novel algorithms,
as well as compare them to existing state-of-the-art meth-
ods. We believe that our library will contribute to the growth
of Continual Learning research and provide a valuable re-
source for the community.

References
[1] Avalanche: an End-to-End Library for Continual Learning,

2nd Continual Learning in Computer Vision Workshop. Pro-
ceedings of IEEE Conference on Computer Vision and Pat-
tern Recognition, 2021. 4

[2] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian
Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-
nanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org. 4

[3] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,
Marcus Rohrbach, and Tinne Tuytelaars. Memory Aware
Synapses: Learning What (not) to Forget. In Vittorio Ferrari,
Martial Hebert, Cristian Sminchisescu, and Yair Weiss, edi-
tors, Computer Vision – ECCV 2018, volume 11207, pages
144–161. Springer International Publishing, Cham, 2018. 1,
3

[4] Lukas Biewald. Experiment tracking with weights and bi-
ases, 2020. Software available from wandb.com. 2, 4

[5] James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018. 4

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech Zaremba.
Openai gym, 2016. 4

[7] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide
Abati, and Simone Calderara. Dark experience for gen-
eral continual learning: a strong, simple baseline. In H.
Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H.
Lin, editors, Advances in neural information processing sys-
tems, volume 33, page 15920–15930. Curran Associates,
Inc., 2020. 3, 4

[8] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,
and Mohamed Elhoseiny. Efficient Lifelong Learning with
A-GEM. In 7th International Conference on Learning Rep-
resentations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net, 2019. 2, 3

[9] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny,
Thalaiyasingam Ajanthan, Puneet K. Dokania, Philip H. S.
Torr, and Marc’Aurelio Ranzato. On tiny episodic memo-
ries in continual learning. (arXiv:1902.10486), Jun 2019.
arXiv:1902.10486 [cs, stat]. 3

[10] Andrew Chen, Andy Chow, Aaron Davidson, Arjun
DCunha, Ali Ghodsi, Sue Ann Hong, Andy Konwinski,
Clemens Mewald, Siddharth Murching, Tomas Nykodym,
Paul Ogilvie, Mani Parkhe, Avesh Singh, Fen Xie, Matei Za-
haria, Richard Zang, Juntai Zheng, and Corey Zumar. De-

velopments in mlflow: A system to accelerate the machine
learning lifecycle. In Proceedings of the Fourth Interna-
tional Workshop on Data Management for End-to-End Ma-
chine Learning, DEEM20, pages 1–4, New York, NY, USA,
Jun 2020. Association for Computing Machinery. 4

[11] Mohammad Mahdi Derakhshani, Xiantong Zhen, Ling Shao,
and Cees Snoek. Kernel Continual Learning. In Marina
Meila and Tong Zhang, editors, Proceedings of the 38th In-
ternational Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, volume 139 of Proceedings
of Machine Learning Research, pages 2621–2631. PMLR,
2021. 3, 4

[12] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex
Nichol, Matthias Plappert, Alec Radford, John Schulman,
Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai base-
lines. https://github.com/openai/baselines,
2017. 4

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image
is worth 16x16 words: Transformers for image recognition
at scale. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net, 2021. 4

[14] Arthur Douillard and Timothée Lesort. Continuum: Simple
management of complex continual learning scenarios, 2021.
4

[15] William Falcon and The PyTorch Lightning team. PyTorch
Lightning, 3 2019. 2, 4

[16] Matthias Fey and Jan Eric Lenssen. Fast Graph Representa-
tion Learning with PyTorch Geometric, 5 2019. 4

[17] Suyog Gupta and Berkin Akin. Accelerator-aware Neural
Network Design using AutoML. arXiv:2003.02838 [cs, eess,
stat], Mar. 2020. 3, 7

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016. 2

[19] Jeremy Howard and Sylvain Gugger. Fastai: A layered api
for deep learning. Information, 11(2), 12020. 4

[20] Pavel Iakubovskii. Segmentation models pytorch. https:
//github.com/qubvel/segmentation_models.
pytorch, 2019. 4

[21] Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim.
Less-forgetful learning for domain expansion in deep neural
networks. Proceedings of the AAAI Conference on Artificial
Intelligence, 32(1), Apr 2018. 3

[22] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Ku-
maran, and Raia Hadsell. Overcoming catastrophic for-
getting in neural networks. Proceedings of the National
Academy of Sciences, 114(13):3521–3526, Mar. 2017. 3

[23] Gustav Larsson, Michael Maire, and Gregory
Shakhnarovich. FractalNet: Ultra-Deep Neural Net-

https://github.com/openai/baselines
https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch

works without Residuals. arXiv:1605.07648 [cs], May
2017. 4

[24] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient
Episodic Memory for Continual Learning. In Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wal-
lach, Rob Fergus, S. V. N. Vishwanathan, and Roman Gar-
nett, editors, Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Pro-
cessing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 6467–6476, 2017. 1

[25] Nicolò Lucchesi, Antonio Carta, Vincenzo Lomonaco, and
Davide Bacciu. Avalanche RL: A continual reinforcement
learning library. In Stan Sclaroff, Cosimo Distante, Marco
Leo, Giovanni Maria Farinella, and Federico Tombari, edi-
tors, Image Analysis and Processing - ICIAP 2022 - 21st In-
ternational Conference, Lecce, Italy, May 23-27, 2022, Pro-
ceedings, Part I, volume 13231 of Lecture Notes in Com-
puter Science, pages 524–535. Springer, 2022. 4

[26] Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Dilan Görür,
Razvan Pascanu, and Hassan Ghasemzadeh. Linear Mode
Connectivity in Multitask and Continual Learning. In 9th In-
ternational Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021. 3, 7

[27] Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pas-
canu, and Hassan Ghasemzadeh. Understanding the role of
training regimes in continual learning. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Informa-
tion Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual, 2020. 3

[28] Seyed Iman Mirzadeh and Hassan Ghasemzadeh. Cl-gym:
Full-featured pytorch library for continual learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, pages 3621–
3627, June 2021. 4

[29] MMSegmentation Contributors. OpenMMLab Semantic
Segmentation Toolbox and Benchmark, 7 2020. 4

[30] Fabrice Normandin, Florian Golemo, Oleksiy Ostapenko,
Pau Rodriguez, Matthew D Riemer, Julio Hurtado, Khimya
Khetarpal, Dominic Zhao, Ryan Lindeborg, Thimothée
Lesort, Laurent Charlin, Irina Rish, and Massimo Caccia.
Sequoia: A Software Framework to Unify Continual Learn-
ing Research. 4

[31] German Ignacio Parisi, Ronald Kemker, Jose L. Part,
Christopher Kanan, and Stefan Wermter. Continual life-
long learning with neural networks: A review. Neural
Networks, 113:54–71, 2019. tex.bibsource: dblp com-
puter science bibliography, https://dblp.org tex.biburl:
https://dblp.org/rec/journals/nn/ParisiKPKW19.bib
tex.timestamp: Fri, 09 Apr 2021 18:26:43 +0200. 1

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:

An imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. 4

[33] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H. Lampert. iCaRL: Incremental Clas-
sifier and Representation Learning. In 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017, pages 5533–
5542. IEEE Computer Society, 2017. 1

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is All you Need. In Isabelle Guyon,
Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pages
5998–6008, 2017. 4

[35] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei
Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu, Yu
Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li,
and Zheng Zhang. Deep graph library: A graph-centric,
highly-performant package for graph neural networks. arXiv
preprint arXiv:1909.01315, 2019. 4

[36] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Perric Cistac,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. Transformers: State-of-the-Art Nat-
ural Language Processing. pages 38–45. Association for
Computational Linguistics, 10 2020. 4

[37] Omry Yadan. Hydra - a framework for elegantly configuring
complex applications. Github, 2019. 3, 4

[38] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-
ual Learning Through Synaptic Intelligence. In Doina Pre-
cup and Yee Whye Teh, editors, Proceedings of the 34th In-
ternational Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages 3987–
3995. PMLR, 2017. 3

A. Reproducibility
SequeL offers configuration files for reproducibility pur-

poses and to ensure the correctness of the framework. Two
examples based on experimental results reported for Rotat-
edMNIST [17, 26] are shown in Code 3 and Code 4. In-
structions on how to run the experiments along with more
examples are provided in the repository.

version: 0.0.1
expected:

avg_acc: 82.3 # as reported in the paper
benchmark:

name: rotatedmnist
num_tasks: 20
per_task_rotation: 9
batch_size: 64
eval_batch_size: 1024

source: mcsgd paper
algo:
name: mcsgd
per_task_memory_samples: 100
lmc_policy: offline
lmc_interpolation: linear
lmc_lr: 0.05
lmc_momentum: 0.8
lmc_batch_size: 64
lmc_init_position: 0.1
lmc_line_samples: 10
lmc_epochs: 1
lr_decay: 0.8

backbone:
type: mlp
n_hidden_layers: 2
width: 256
num_classes: 10
dropout: 0.2

optimizer:
type: sgd
lr: 0.1
momentum: 0.8

training:
epochs_per_task: 1

Code 3. Reproducibility Experiment for MCSGD.

version: 0.0.1
expected:
avg_acc: 77.42 # as reported in the paper

source: original paper
algo:
name: lamaml
glances: 5
n_inner_updates: 5
second_order: false
grad_clip_norm: 2.0
learn_lr: true
lr_alpha: 0.3
sync_update: false
mem_size: 200

backbone:
type: mlp
n_hidden_layers: 2
width: 100

optimizer:
type: sgd
lr: 0.1

benchmark:
name: rotatedmnist
per_task_rotation: 9
num_tasks: 20
batch_size: 10
eval_batch_size: 10000
subset: 1000

training:
epoch_per_task: 1

Code 4. Reproducibility Experiment for LaMAML.

	1 . Introduction
	2 . Framework
	2.1 . Benchmarks
	2.2 . Models/Backbones
	2.3 . Callbacks
	2.4 . Loggers
	2.5 . Algorithms

	3 . Related Work
	4 . Conclusion
	A . Reproducibility

